InMemoryDatastore¶
-
class
lsst.daf.butler.datastores.inMemoryDatastore.InMemoryDatastore(config, registry=None, butlerRoot=None)¶ Bases:
lsst.daf.butler.DatastoreBasic Datastore for writing to an in memory cache.
This datastore is ephemeral in that the contents of the datastore disappear when the Python process completes. This also means that other processes can not access this datastore.
Parameters: - config :
DatastoreConfigorstr Configuration.
Attributes: - config :
DatastoreConfig Configuration used to create Datastore.
- storageClassFactory :
StorageClassFactory Factory for creating storage class instances from name.
- name :
str Label associated with this Datastore.
Attributes Summary
containerKeydefaultConfigFilePath to configuration defaults. isEphemeralA new datastore is created every time and datasets disappear when the process shuts down. Methods Summary
addStoredItemInfo(ref, info)Record internal storage information associated with this DatasetRef.exists(ref)Check if the dataset exists in the datastore. fromConfig(config, registry[, butlerRoot])Create datastore from type specified in config file. get(ref[, parameters])Load an InMemoryDataset from the store. getLookupKeys()Return all the lookup keys relevant to this datastore. getStoredItemInfo(ref)Retrieve information associated with object stored in this Datastore.getUri(ref[, predict])URI to the Dataset. ingest(path, ref[, formatter, transfer])Add an on-disk file with the given DatasetRefto the store, possibly transferring it.put(inMemoryDataset, ref)Write a InMemoryDataset with a given DatasetRefto the store.remove(ref)Indicate to the Datastore that a Dataset can be removed. removeStoredItemInfo(ref)Remove information about the object associated with this dataset. setConfigRoot(root, config, full[, overwrite])Set any filesystem-dependent config options for this Datastore to be appropriate for a new empty repository with the given root. transaction()Context manager supporting Datastoretransactions.transfer(inputDatastore, ref)Retrieve a Dataset from an input Datastore, and store the result in thisDatastore.validateConfiguration(entities[, logFailures])Validate some of the configuration for this datastore. validateKey(lookupKey, entity)Validate a specific look up key with supplied entity. Attributes Documentation
-
containerKey= None¶
-
defaultConfigFile= 'datastores/inMemoryDatastore.yaml'¶ Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified.
-
isEphemeral= True¶ A new datastore is created every time and datasets disappear when the process shuts down.
Methods Documentation
-
addStoredItemInfo(ref, info)¶ Record internal storage information associated with this
DatasetRef.Parameters: - ref :
DatasetRef The Dataset that has been stored.
- info :
StoredItemInfo Metadata associated with the stored Dataset.
Raises: - KeyError
An entry with this DatasetRef already exists.
- ref :
-
exists(ref)¶ Check if the dataset exists in the datastore.
Parameters: - ref :
DatasetRef Reference to the required dataset.
Returns: - ref :
-
static
fromConfig(config, registry, butlerRoot=None)¶ Create datastore from type specified in config file.
Parameters: - config :
Config Configuration instance.
- config :
-
get(ref, parameters=None)¶ Load an InMemoryDataset from the store.
Parameters: - ref :
DatasetRef Reference to the required Dataset.
- parameters :
dict StorageClass-specific parameters that specify, for example, a slice of the Dataset to be loaded.
Returns: - inMemoryDataset :
object Requested Dataset or slice thereof as an InMemoryDataset.
Raises: - FileNotFoundError
Requested dataset can not be retrieved.
- TypeError
Return value from formatter has unexpected type.
- ValueError
Formatter failed to process the dataset.
- ref :
-
getLookupKeys()¶ Return all the lookup keys relevant to this datastore.
Returns: - keys :
setofLookupKey The keys stored internally for looking up information based on
DatasetTypename orStorageClass.
- keys :
-
getStoredItemInfo(ref)¶ Retrieve information associated with object stored in this
Datastore.Parameters: - ref :
DatasetRef The Dataset that is to be queried.
Returns: - info :
StoredItemInfo Stored information about the internal location of this file and its formatter.
Raises: - KeyError
Dataset with that id can not be found.
- ref :
-
getUri(ref, predict=False)¶ URI to the Dataset.
Always uses “mem://” URI prefix.
Parameters: Returns: - uri :
str URI string pointing to the Dataset within the datastore. If the Dataset does not exist in the datastore, and if
predictisTrue, the URI will be a prediction and will include a URI fragment “#predicted”. If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
Raises: - FileNotFoundError
A URI has been requested for a dataset that does not exist and guessing is not allowed.
- uri :
-
ingest(path, ref, formatter=None, transfer=None)¶ Add an on-disk file with the given
DatasetRefto the store, possibly transferring it.The caller is responsible for ensuring that the given (or predicted) Formatter is consistent with how the file was written;
ingestwill in general silently ignore incorrect formatters (as it cannot efficiently verify their correctness), deferring errors untilgetis first called on the ingested dataset.Datastores are not required to implement this method, but must do so in order to support direct raw data ingest.
Parameters: - path :
str File path, relative to the repository root.
- ref :
DatasetRef Reference to the associated Dataset.
- formatter :
Formatter(optional) Formatter that should be used to retreive the Dataset. If not provided, the formatter will be constructed according to Datastore configuration.
- transfer : str (optional)
If not None, must be one of ‘move’, ‘copy’, ‘hardlink’, or ‘symlink’ indicating how to transfer the file. Datastores need not support all options, but must raise NotImplementedError if the passed option is not supported. That includes None, which indicates that the file should be ingested at its current location with no transfer. If a Datastore does support ingest-without-transfer in general, but the given path is not appropriate, an exception other than NotImplementedError that better describes the problem should be raised.
Raises: - NotImplementedError
Raised if the given transfer mode is not supported.
- DatasetTypeNotSupportedError
The associated
DatasetTypeis not handled by this datastore.
- path :
-
put(inMemoryDataset, ref)¶ Write a InMemoryDataset with a given
DatasetRefto the store.Parameters: - inMemoryDataset :
object The Dataset to store.
- ref :
DatasetRef Reference to the associated Dataset.
Raises: - TypeError
Supplied object and storage class are inconsistent.
- DatasetTypeNotSupportedError
The associated
DatasetTypeis not handled by this datastore.
Notes
If the datastore is configured to reject certain dataset types it is possible that the put will fail and raise a
DatasetTypeNotSupportedError. The main use case for this is to allowChainedDatastoreto put to multiple datastores without requiring that every datastore accepts the dataset.- inMemoryDataset :
-
remove(ref)¶ Indicate to the Datastore that a Dataset can be removed.
Parameters: - ref :
DatasetRef Reference to the required Dataset.
Raises: - FileNotFoundError
Attempt to remove a dataset that does not exist.
- ref :
-
removeStoredItemInfo(ref)¶ Remove information about the object associated with this dataset.
Parameters: - ref :
DatasetRef The Dataset that has been removed.
- ref :
-
classmethod
setConfigRoot(root, config, full, overwrite=True)¶ Set any filesystem-dependent config options for this Datastore to be appropriate for a new empty repository with the given root.
Does nothing in this implementation.
Parameters: - root :
str Filesystem path to the root of the data repository.
- config :
Config A
Configto update. Only the subset understood by this component will be updated. Will not expand defaults.- full :
Config A complete config with all defaults expanded that can be converted to a
DatastoreConfig. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied fromfulltoconfig.- overwrite :
bool, optional If
False, do not modify a value inconfigif the value already exists. Default is always to overwrite with the providedroot.
Notes
If a keyword is explicitly defined in the supplied
configit will not be overridden by this method ifoverwriteisFalse. This allows explicit values set in external configs to be retained.- root :
-
transaction()¶ Context manager supporting
Datastoretransactions.Transactions can be nested, and are to be used in combination with
Registry.transaction.
-
transfer(inputDatastore, ref)¶ Retrieve a Dataset from an input
Datastore, and store the result in thisDatastore.Parameters: - inputDatastore :
Datastore The external
Datastorefrom which to retreive the Dataset.- ref :
DatasetRef Reference to the required Dataset in the input data store.
- inputDatastore :
-
validateConfiguration(entities, logFailures=False)¶ Validate some of the configuration for this datastore.
Parameters: Raises: - DatastoreValidationError
Raised if there is a validation problem with a configuration. All the problems are reported in a single exception.
Notes
This method is a no-op.
-
validateKey(lookupKey, entity)¶ Validate a specific look up key with supplied entity.
Parameters: - lookupKey :
LookupKey Key to use to retrieve information from the datastore configuration.
- entity :
DatasetRef,DatasetType, orStorageClass Entity to compare with configuration retrieved using the specified lookup key.
Raises: - DatastoreValidationError
Raised if there is a problem with the combination of entity and lookup key.
Notes
Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated.
- lookupKey :
- config :