InputDatasetField¶
-
lsst.pipe.base.InputDatasetField(*, doc, dimensions, storageClass, name='', scalar=False, check=None, nameTemplate='', manualLoad=False)¶ Factory function to create
Configclass instances ofInputDatasetConfigThis function servers as syntactic sugar for creating
ConfigFieldwhich areInputDatasetConfig. The naming of this function violates the normal convention of a lowercase first letter in the function name, as this function is intended to sit in the same place asConfigFieldclasses, and consistency in declaration syntax is important.The input arguments for this class are a combination of the arguments for
ConfigFieldandInputDatasetConfig. The arguments doc and check come fromConfigField, while name, dimensions, scalar, nameTemplate, manualLoad and storageClass come fromInputDatasetConfig.Parameters: - doc :
str Documentation string for the
InputDatasetConfig- name :
str Name of the
DatasetTypein the returnedInputDatasetConfig- dimensions : iterable of
str Iterable of Dimensions for this
DatasetType- scalar :
bool, optional If set to True then only a single dataset is expected on input or produced on output. In that case list of objects/DataIds will be unpacked before calling task methods, returned data is expected to contain single objects as well.
- nameTemplate :
str, optional Template for the
namefield which is specified as a python formattable string. The template is formatted during the configuration of a Config class with a user defined string. Defaults to empty string, in which case no formatting is done.- manualLoad :
bool Indicates runQuantum will not load the data from the butler, and that the task intends to do the loading itself. Defaults to False
- storageClass :
str Name of the
StorageClassin theInputDatasetConfig- check : callable
A callable to be called with the field value that returns False if the value is invalid.
Returns: - result :
ConfigField Instance of a
ConfigFieldwithInputDatasetConfigas a dtype
- doc :