Datastore¶
-
class
lsst.daf.butler.
Datastore
(config, registry, butlerRoot=None)¶ Bases:
object
Datastore interface.
Parameters: - config :
DatastoreConfig
orstr
Load configuration
Attributes: - config :
DatastoreConfig
Configuration used to create Datastore.
- registry :
Registry
Registry
to use when recording the writing of Datasets.- name :
str
Label associated with this Datastore.
Attributes Summary
containerKey
Name of the key containing a list of subconfigurations that also need to be merged with defaults and will likely use different Python datastore classes (but all using DatastoreConfig). defaultConfigFile
Path to configuration defaults. isEphemeral
Indicate whether this Datastore is ephemeral or not. Methods Summary
exists
(datasetRef)Check if the dataset exists in the datastore. fromConfig
(config, registry[, butlerRoot])Create datastore from type specified in config file. get
(datasetRef[, parameters])Load an InMemoryDataset
from the store.getLookupKeys
()Return all the lookup keys relevant to this datastore. getUri
(datasetRef)URI to the Dataset. ingest
(path, ref[, formatter, transfer])Add an on-disk file with the given DatasetRef
to the store, possibly transferring it.put
(inMemoryDataset, datasetRef)Write a InMemoryDataset
with a givenDatasetRef
to the store.remove
(datasetRef)Indicate to the Datastore that a Dataset can be removed. setConfigRoot
(root, config, full[, overwrite])Set any filesystem-dependent config options for this Datastore to be appropriate for a new empty repository with the given root. transaction
()Context manager supporting Datastore
transactions.transfer
(inputDatastore, datasetRef)Retrieve a Dataset from an input Datastore
, and store the result in thisDatastore
.validateConfiguration
(entities[, logFailures])Validate some of the configuration for this datastore. validateKey
(lookupKey, entity[, logFailures])Validate a specific look up key with supplied entity. Attributes Documentation
-
containerKey
= None¶ Name of the key containing a list of subconfigurations that also need to be merged with defaults and will likely use different Python datastore classes (but all using DatastoreConfig). Assumed to be a list of configurations that can be represented in a DatastoreConfig and containing a “cls” definition. None indicates that no containers are expected in this Datastore.
-
defaultConfigFile
= None¶ Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified.
-
isEphemeral
= False¶ Indicate whether this Datastore is ephemeral or not. An ephemeral datastore is one where the contents of the datastore will not exist across process restarts.
Methods Documentation
-
exists
(datasetRef)¶ Check if the dataset exists in the datastore.
Parameters: - datasetRef :
DatasetRef
Reference to the required dataset.
Returns: - datasetRef :
-
static
fromConfig
(config, registry, butlerRoot=None)¶ Create datastore from type specified in config file.
Parameters: - config :
Config
Configuration instance.
- config :
-
get
(datasetRef, parameters=None)¶ Load an
InMemoryDataset
from the store.Parameters: - datasetRef :
DatasetRef
Reference to the required Dataset.
- parameters :
dict
StorageClass
-specific parameters that specify a slice of the Dataset to be loaded.
Returns: - inMemoryDataset :
object
Requested Dataset or slice thereof as an InMemoryDataset.
- datasetRef :
-
getLookupKeys
()¶ Return all the lookup keys relevant to this datastore.
Returns: - keys :
set
ofLookupKey
The keys stored internally for looking up information based on
DatasetType
name orStorageClass
.
- keys :
-
getUri
(datasetRef)¶ URI to the Dataset.
Parameters: - datasetRef :
DatasetRef
Reference to the required Dataset.
Returns: - uri :
str
URI string pointing to the Dataset within the datastore. If the Dataset does not exist in the datastore, the URI may be a guess. If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
- datasetRef :
-
ingest
(path, ref, formatter=None, transfer=None)¶ Add an on-disk file with the given
DatasetRef
to the store, possibly transferring it.The caller is responsible for ensuring that the given (or predicted) Formatter is consistent with how the file was written;
ingest
will in general silently ignore incorrect formatters (as it cannot efficiently verify their correctness), deferring errors untilget
is first called on the ingested dataset.Datastores are not required to implement this method, but must do so in order to support direct raw data ingest.
Parameters: - path :
str
File path, relative to the repository root.
- ref :
DatasetRef
Reference to the associated Dataset.
- formatter :
Formatter
(optional) Formatter that should be used to retreive the Dataset. If not provided, the formatter will be constructed according to Datastore configuration.
- transfer : str (optional)
If not None, must be one of ‘move’, ‘copy’, ‘hardlink’, or ‘symlink’ indicating how to transfer the file. Datastores need not support all options, but must raise NotImplementedError if the passed option is not supported. That includes None, which indicates that the file should be ingested at its current location with no transfer. If a Datastore does support ingest-without-transfer in general, but the given path is not appropriate, an exception other than NotImplementedError that better describes the problem should be raised.
Raises: - NotImplementedError
Raised if the given transfer mode is not supported.
- DatasetTypeNotSupportedError
The associated
DatasetType
is not handled by this datastore.
- path :
-
put
(inMemoryDataset, datasetRef)¶ Write a
InMemoryDataset
with a givenDatasetRef
to the store.Parameters: - inMemoryDataset :
InMemoryDataset
The Dataset to store.
- datasetRef :
DatasetRef
Reference to the associated Dataset.
- inMemoryDataset :
-
remove
(datasetRef)¶ Indicate to the Datastore that a Dataset can be removed.
Parameters: - datasetRef :
DatasetRef
Reference to the required Dataset.
Raises: - FileNotFoundError
When Dataset does not exist.
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
- datasetRef :
-
classmethod
setConfigRoot
(root, config, full, overwrite=True)¶ Set any filesystem-dependent config options for this Datastore to be appropriate for a new empty repository with the given root.
Parameters: - root :
str
Filesystem path to the root of the data repository.
- config :
Config
A
Config
to update. Only the subset understood by this component will be updated. Will not expand defaults.- full :
Config
A complete config with all defaults expanded that can be converted to a
DatastoreConfig
. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied fromfull
toconfig
.- overwrite :
bool
, optional If
False
, do not modify a value inconfig
if the value already exists. Default is always to overwrite with the providedroot
.
Notes
If a keyword is explicitly defined in the supplied
config
it will not be overridden by this method ifoverwrite
isFalse
. This allows explicit values set in external configs to be retained.- root :
-
transaction
()¶ Context manager supporting
Datastore
transactions.Transactions can be nested, and are to be used in combination with
Registry.transaction
.
-
transfer
(inputDatastore, datasetRef)¶ Retrieve a Dataset from an input
Datastore
, and store the result in thisDatastore
.Parameters: - inputDatastore :
Datastore
The external
Datastore
from which to retreive the Dataset.- datasetRef :
DatasetRef
Reference to the required Dataset.
- inputDatastore :
-
validateConfiguration
(entities, logFailures=False)¶ Validate some of the configuration for this datastore.
Parameters: - entities :
DatasetRef
,DatasetType
, orStorageClass
Entities to test against this configuration. Can be differing types.
- logFailures :
bool
, optional If
True
, output a log message for every validation error detected.
Raises: - DatastoreValidationError
Raised if there is a validation problem with a configuration.
Notes
Which parts of the configuration are validated is at the discretion of each Datastore implementation.
- entities :
-
validateKey
(lookupKey, entity, logFailures=False)¶ Validate a specific look up key with supplied entity.
Parameters: - lookupKey :
LookupKey
Key to use to retrieve information from the datastore configuration.
- entity :
DatasetRef
,DatasetType
, orStorageClass
Entity to compare with configuration retrieved using the specified lookup key.
Raises: - DatastoreValidationError
Raised if there is a problem with the combination of entity and lookup key.
Notes
Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated.
- lookupKey :
- config :