ZogyImagePsfMatchTask¶
-
class
lsst.ip.diffim.
ZogyImagePsfMatchTask
(*args, **kwargs)¶ Bases:
lsst.ip.diffim.ImagePsfMatchTask
Task to perform Zogy PSF matching and image subtraction.
This class inherits from ImagePsfMatchTask to contain the _warper subtask and related methods.
Methods Summary
emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. getAllSchemaCatalogs
()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getFwhmPix
(psf)Return the FWHM in pixels of a Psf getName
()Get the name of the task. getSchemaCatalogs
()Get the schemas generated by this task. getSelectSources
(exposure[, sigma, …])Get sources to use for Psf-matching getTaskDict
()Get a dictionary of all tasks as a shallow copy. makeCandidateList
(templateExposure, …[, …])Make a list of acceptable KernelCandidates makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.matchExposures
(templateExposure, scienceExposure)Warp and PSF-match an exposure to the reference matchMaskedImages
(templateMaskedImage, …)PSF-match a MaskedImage (templateMaskedImage) to a reference MaskedImage (scienceMaskedImage) subtractExposures
(templateExposure, …[, …])Register, PSF-match, and subtract two Exposures using the ZOGY algorithm. subtractMaskedImages
(templateExposure, …)Psf-match and subtract two MaskedImages timer
(name[, logLevel])Context manager to log performance data for an arbitrary block of code. Methods Documentation
-
emptyMetadata
()¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
getAllSchemaCatalogs
()¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict
Keys are butler dataset type, values are a empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs
, not this method.- schemacatalogs :
-
getFullMetadata
()¶ Get metadata for all tasks.
Returns: - metadata :
lsst.daf.base.PropertySet
The
PropertySet
keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc..
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
()¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getFwhmPix
(psf)¶ Return the FWHM in pixels of a Psf
-
getSchemaCatalogs
()¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict
Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for this task.
See also
Task.getAllSchemaCatalogs
Notes
Warning
Subclasses that use schemas must override this method. The default implemenation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getSelectSources
(exposure, sigma=None, doSmooth=True, idFactory=None)¶ Get sources to use for Psf-matching
This method runs detection and measurement on an exposure. The returned set of sources will be used as candidates for Psf-matching.
Parameters: Returns: - selectSources :
source catalog containing candidates for the Psf-matching
-
getTaskDict
()¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc..
- taskDict :
-
makeCandidateList
(templateExposure, scienceExposure, kernelSize, candidateList=None)¶ Make a list of acceptable KernelCandidates
Accept or generate a list of candidate sources for Psf-matching, and examine the Mask planes in both of the images for indications of bad pixels
Parameters: - templateExposure :
lsst.afw.image.Exposure
Exposure that will be convolved
- scienceExposure :
lsst.afw.image.Exposure
Exposure that will be matched-to
- kernelSize :
float
Dimensions of the Psf-matching Kernel, used to grow detection footprints
- candidateList :
list
, optional List of Sources to examine. Elements must be of type afw.table.Source or a type that wraps a Source and has a getSource() method, such as meas.algorithms.PsfCandidateF.
Returns: - templateExposure :
-
classmethod
makeField
(doc)¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config) aSubtask = ATaskClass.makeField("a brief description of what this task does")
- doc :
-
makeSubtask
(name, **keyArgs)¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance of pex_config ConfigurableField or RegistryField.- name :
-
matchExposures
(templateExposure, scienceExposure, templateFwhmPix=None, scienceFwhmPix=None, candidateList=None, doWarping=True, convolveTemplate=True)¶ Warp and PSF-match an exposure to the reference
Do the following, in order:
- Warp templateExposure to match scienceExposure,
- if doWarping True and their WCSs do not already match
- Determine a PSF matching kernel and differential background model
- that matches templateExposure to scienceExposure
- Convolve templateExposure by PSF matching kernel
Parameters: - templateExposure :
lsst.afw.image.Exposure
Exposure to warp and PSF-match to the reference masked image
- scienceExposure :
lsst.afw.image.Exposure
Exposure whose WCS and PSF are to be matched to
- templateFwhmPix :`float`
FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float
FWHM (in pixels) of the Psf in the science image
- candidateList :
list
, optional a list of footprints/maskedImages for kernel candidates; if None then source detection is run.
- Currently supported: list of Footprints or measAlg.PsfCandidateF
- doWarping :
bool
what to do if templateExposure’s and scienceExposure’s WCSs do not match:
- if True then warp templateExposure to match scienceExposure
- if False then raise an Exception
- convolveTemplate :
bool
convolve the template image or the science image:
- if True, templateExposure is warped if doWarping, templateExposure is convolved
- if False, templateExposure is warped if doWarping, scienceExposure is convolved
Returns: - results :
Struct
a
lsst.pipe.base.Struct
containing these fields:matchedImage
: the PSF-matched exposure =- warped templateExposure convolved by psfMatchingKernel. This has:
- the same parent bbox, Wcs and Calib as scienceExposure
- the same filter as templateExposure
- no Psf (because the PSF-matching process does not compute one)
psfMatchingKernel
: the PSF matching kernelbackgroundModel
: differential background modelkernelCellSet
: SpatialCellSet used to solve for the PSF matching kernel
Raises: - RuntimeError
- if doWarping is False and templateExposure’s and scienceExposure’s
- WCSs do not match
-
matchMaskedImages
(templateMaskedImage, scienceMaskedImage, candidateList, templateFwhmPix=None, scienceFwhmPix=None)¶ PSF-match a MaskedImage (templateMaskedImage) to a reference MaskedImage (scienceMaskedImage)
Do the following, in order:
- Determine a PSF matching kernel and differential background model
- that matches templateMaskedImage to scienceMaskedImage
- Convolve templateMaskedImage by the PSF matching kernel
Parameters: - templateMaskedImage :
lsst.afw.image.MaskedImage
masked image to PSF-match to the reference masked image; must be warped to match the reference masked image
- scienceMaskedImage :
lsst.afw.image.MaskedImage
maskedImage whose PSF is to be matched to
- templateFwhmPix :
float
FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float
FWHM (in pixels) of the Psf in the science image
- candidateList :
list
, optional a list of footprints/maskedImages for kernel candidates; if None then source detection is run.
- Currently supported: list of Footprints or measAlg.PsfCandidateF
Returns: - result :
callable
- a `lsst.pipe.base.Struct` containing these fields:
- - psfMatchedMaskedImage: the PSF-matched masked image =
templateMaskedImage convolved with psfMatchingKernel. This has the same xy0, dimensions and wcs as scienceMaskedImage.
- - psfMatchingKernel: the PSF matching kernel
- - backgroundModel: differential background model
- - kernelCellSet: SpatialCellSet used to solve for the PSF matching kernel
Raises: - RuntimeError
if input images have different dimensions
-
subtractExposures
(templateExposure, scienceExposure, doWarping=True, spatiallyVarying=True, inImageSpace=False, doPreConvolve=False)¶ Register, PSF-match, and subtract two Exposures using the ZOGY algorithm.
Do the following, in order: - Warp templateExposure to match scienceExposure, if their WCSs do not already match - Compute subtracted exposure ZOGY image subtraction algorithm on the two exposures
Parameters: - templateExposure :
lsst.afw.image.Exposure
exposure to PSF-match to scienceExposure. The exposure’s mean value is subtracted in-place.
- scienceExposure :
lsst.afw.image.Exposure
reference Exposure. The exposure’s mean value is subtracted in-place.
- doWarping :
bool
what to do if templateExposure’s and scienceExposure’s WCSs do not match: - if True then warp templateExposure to match scienceExposure - if False then raise an Exception
- spatiallyVarying :
bool
If True, perform the operation over a grid of patches across the two exposures
- inImageSpace :
bool
If True, perform the Zogy convolutions in image space rather than in frequency space.
- doPreConvolve :
bool
*Currently not implemented.* If True assume we are to compute the match filter-convolved exposure which can be thresholded for detection. In the case of Zogy this would mean we compute the Scorr image.
Returns: - A `lsst.pipe.base.Struct` containing these fields:
- - subtractedExposure: subtracted Exposure
- - warpedExposure: templateExposure after warping to match scienceExposure (if doWarping true)
- templateExposure :
-
subtractMaskedImages
(templateExposure, scienceExposure, doWarping=True, spatiallyVarying=True, inImageSpace=False, doPreConvolve=False)¶ Psf-match and subtract two MaskedImages
Do the following, in order:
- PSF-match templateMaskedImage to scienceMaskedImage
- Determine the differential background
- Return the difference: scienceMaskedImage
- ((warped templateMaskedImage convolved with psfMatchingKernel) + backgroundModel)
Parameters: - templateMaskedImage :
lsst.afw.image.MaskedImage
MaskedImage to PSF-match to scienceMaskedImage
- scienceMaskedImage :
lsst.afw.image.MaskedImage
reference MaskedImage
- templateFwhmPix :
float
FWHM (in pixels) of the Psf in the template image (image to convolve)
- scienceFwhmPix :
float
FWHM (in pixels) of the Psf in the science image
- candidateList :
list
, optional a list of footprints/maskedImages for kernel candidates; if None then source detection is run.
- Currently supported: list of Footprints or measAlg.PsfCandidateF
Returns: - results :
Struct
a
lsst.pipe.base.Struct
containing these fields:subtractedMaskedImage
: scienceMaskedImage - (matchedImage + backgroundModel)matchedImage
: templateMaskedImage convolved with psfMatchingKernelpsfMatchingKernel`
: PSF matching kernelbackgroundModel
: differential background modelkernelCellSet
: SpatialCellSet used to determine PSF matching kernel
-
timer
(name, logLevel=10000)¶ Context manager to log performance data for an arbitrary block of code.
Parameters: - name :
str
Name of code being timed; data will be logged using item name:
Start
andEnd
.- logLevel
A
lsst.log
level constant.
See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- name :
-