Class lsst::afw::geom::SipApproximation

class SipApproximation

A fitter and results class for approximating a general Transform in a form compatible with FITS WCS persistence.

The Simple Imaging Polynomial (SIP) convention (Shupe et al 2005) adds forward and reverse polynomial mappings to a standard projection FITS WCS projection (e.g. “TAN” for gnomonic) that relate Intermediate World Coordinates (see Calabretta & Greisen 2002) to image pixel coordinates. The SIP “forward” transform is defined by polynomial coeffients \(A\) and \(B\) that map pixel coordinates \((u, v)\) to Intermediate World Coordinates \((x, y)\) via

\[\begin{split} \boldsymbol{S}\left[\begin{array}{c} x \\ y \end{array}\right] \equiv \left[\begin{array}{c} x_s \\ y_s \end{array}\right] = \left[\begin{array}{c} (u - u_0) + \displaystyle\sum_{p,q}^{0 \le p + q \le N} \mathrm{A}_{p,q} (u - u_0)^p (v - v_0)^q \\ (v - v_0) + \displaystyle\sum_{p,q}^{0 \le p + q \le N} \mathrm{B}_{p,q} (u - u_0)^p (v - v_0)^q \end{array}\right] \end{split}\]
The reverse transform has essentially the same form:
\[\begin{split} \left[\begin{array}{c} u - u_0 \\ v - v_0 \end{array}\right] = \left[\begin{array}{c} x_s + \displaystyle\sum_{p,q}^{0 \le p + q \le N} \mathrm{AP}_{p,q} x_s^p y_s^q \\ y_s + \displaystyle\sum_{p,q}^{0 \le p + q \le N} \mathrm{BP}_{p,q} x_s^p y_s^q \end{array}\right] \end{split}\]
In both cases, \((u_0, v_0)\) is the pixel origin (CRPIX in FITS WCS) and \(\boldsymbol{S}\) is the inverse of the Jacobian “CD” matrix. Both CRPIX and CD are considered fixed inputs, and we do not attempt to null the zeroth- and first-order terms of \(A\) and \(B\) (as some SIP fitters do); together, these conventions make solving for the coefficients a much simpler linear problem.

While LSST WCSs are in general too complex to be described exactly in FITS WCS, they can generally be closely approximated by standard FITS WCS projection with additional SIP distortions. This class fits such an approximation, given a TransformPoint2ToPoint2 object that represents the exact mapping from pixels to Intermediate World Coordinates with a SIP distortion.

Note

In the implementation, we typically refer to \((u-u_0, v-v_0)\) as dpix (for “pixel delta”), and \((x_s, y_s)\) as siwc

(for “scaled

intermediate world coordinates”).