Class lsst::shapelet::ShapeletFunction

class ShapeletFunction

A 2-d function defined by an expansion onto a Gauss-Laguerre or Gauss-Hermite basis.

The coefficients are in units of flux, not surface brightness; increasing the area of the basis ellipse while leaving the coefficients unchanged will decrease the surface brightness by the ratio of the areas of the new and old ellipses. This convention is necessary to ensure that convolution with a delta function is sane. Because the BasisEvaluator class does not deal with ellipses, it is necessary to divide its output by R^2 to get the same result as a ShapeletFunctionEvaluator whose ellipse has determinant radius of R.

The coefficient normalization is not identical to that of a Gaussian, however; a zeroth-order ShapeletFunction with its only coefficient value set to 1 has a flux of 2.0 * pi^(1/2). This value is defined as ShapeletFunction::FLUX_FACTOR. Of course, to get the flux of a more complex shapelet expansion you have to use ShapeletFunctionEvaluator::integrate().

Note that the units of the coefficients would have to be radius for basis functions with the same ellipse to be orthonormal, but this orthonormality isn’t very useful, because the basis functions aren’t even orthogonal in the more common case that the ellipses differ. However, basis functions defined on the unit circle are still orthonormal.