Template Class NeuralNetCovariogram¶
Defined in File GaussianProcess.h
Inheritance Relationships¶
Base Type¶
public lsst::afw::math::Covariogram< T >(Template Class Covariogram)
Class Documentation¶
-
template<typename
T>
classNeuralNetCovariogram: public lsst::afw::math::Covariogram<T> a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
Contains two hyper parameters (_sigma0 and _sigma1) that characterize the expected variance of the function being interpolated
see Rasmussen and Williams (2006) http://www.gaussianprocess.org/gpml/ equation 4.29
Public Functions
-
~NeuralNetCovariogram()¶
-
NeuralNetCovariogram()¶
-
void
setSigma0(double sigma0)¶ set the _sigma0 hyper parameter
-
void
setSigma1(double sigma1)¶ set the _sigma1 hyper parameter
-
T
operator()(ndarray::Array<const T, 1, 1> const &p1, ndarray::Array<const T, 1, 1> const &p2) const¶ Actually evaluate the covariogram function relating two points you want to interpolate from
- Parameters
[in] p1: the first point[in] p2: the second point
-