Template Class ImagePca¶
Defined in File ImagePca.h
Inheritance Relationships¶
Derived Types¶
public lsst::ip::diffim::detail::KernelPca< ImageT >(Template Class KernelPca)public lsst::meas::algorithms::PsfImagePca< ImageT >(Template Class PsfImagePca)
Class Documentation¶
- 
template<typename 
ImageT>
classImagePca¶ Subclassed by lsst::ip::diffim::detail::KernelPca< ImageT >, lsst::meas::algorithms::PsfImagePca< ImageT >
Public Types
- 
typedef std::vector<std::shared_ptr<ImageT>> 
ImageList¶ 
Public Functions
- 
ImagePca(bool constantWeight = true)¶ ctor
- Parameters
 constantWeight: Should all stars be weighted equally?
- 
virtual 
~ImagePca()¶ 
- 
ImagePca &
operator=(ImagePca const&)¶ 
- 
ImagePca &
operator=(ImagePca&&)¶ 
Add an image to the set to be analyzed
- 
lsst::geom::Extent2I const 
getDimensions() const¶ Return the dimension of the images being analyzed.
- 
virtual void 
analyze()¶ 
- 
virtual double 
updateBadPixels(unsigned long mask, int const ncomp)¶ Update the bad pixels (i.e. those for which (value & mask) != 0) based on the current PCA decomposition; if none is available, use the mean of the good pixels
N.b. the work is actually done in do_updateBadPixels as the code only makes sense and compiles when we are doing a PCA on a set of MaskedImages
- Return
 the maximum change made to any pixel
- Parameters
 mask: Mask defining bad pixelsncomp: Number of components to use in estimate
- 
std::vector<double> const &
getEigenValues() const¶ Return Eigen values.
- 
typedef std::vector<std::shared_ptr<ImageT>>