Class HermiteTransformMatrix¶
Defined in File HermiteTransformMatrix.h
Class Documentation¶
-
class
HermiteTransformMatrix
¶ A class that computes a matrix that applies a linear transform to a 2-d Hermite polynomial expansion.
Let
\[ Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \equiv \mathcal{H}_{n_0}\!(x_0)\;\mathcal{H}_{n_1}\!(x_1) \]where\[ \mathcal{H}_n(x)=(2^n \pi^{1/2} n!)^{-1/2}H_n(x) \]is the \(i\)th “alternate” Hermite polynomial. This function computes the matrix \(\boldsymbol{Q}(\boldsymbol{U})\) given a linear transform \(\boldsymbol{U}\) such that\[ Z_{\boldsymbol{m}}\!(\boldsymbol{U}\boldsymbol{x}) = \sum_{\boldsymbol{n}} Q_{\boldsymbol{m},\boldsymbol{n}}\!(\boldsymbol{U})\,Z_{\boldsymbol{n}}\!(\boldsymbol{x}) \]Public Functions
-
Eigen::MatrixXd
compute
(Eigen::Matrix2d const &transform) const¶ Compute the matrix for a new linear transform.
-
Eigen::MatrixXd
compute
(geom::LinearTransform const &transform) const¶ Compute the matrix for a new linear transform.
-
Eigen::MatrixXd
compute
(Eigen::Matrix2d const &transform, int order) const¶ Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
-
Eigen::MatrixXd
compute
(geom::LinearTransform const &transform, int order) const¶ Compute the matrix for a new linear transform at the given order (must be <= getOrder()).
-
Eigen::MatrixXd
getCoefficientMatrix
() const¶ Return the matrix that maps (1-d) regular polynomials to the alternate Hermite polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
-
Eigen::MatrixXd
getInverseCoefficientMatrix
() const¶ Return the matrix that maps (1-d) alternate Hermite polynomials to regular polynomials.
The matrix is always lower triangular, and has size equal to getOrder()+1.
-
int
getOrder
() const¶ Return the maximum order at which the matrix can be computed.
-
HermiteTransformMatrix
(int order)¶ Construct an instance able to compute the transform matrix at up to the given order.
-
Eigen::MatrixXd