DecorrelateALKernelMapper¶
- 
class 
lsst.ip.diffim.DecorrelateALKernelMapper(*args, **kwargs)¶ Bases:
lsst.ip.diffim.DecorrelateALKernelTask,lsst.ip.diffim.ImageMapperTask to be used as an ImageMapper for performing A&L decorrelation on subimages on a grid across a A&L difference image.
This task subclasses DecorrelateALKernelTask in order to implement all of that task’s configuration parameters, as well as its
runmethod.Methods Summary
computeCorrectedDiffimPsf(kappa, psf[, …])Compute the (decorrelated) difference image’s new PSF.
computeVarianceMean(exposure)Empty (clear) the metadata for this Task and all sub-Tasks.
Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName()Get the name of the task.
Get the schemas generated by this task.
Get a dictionary of all tasks as a shallow copy.
makeField(doc)Make a
lsst.pex.config.ConfigurableFieldfor this task.makeSubtask(name, **keyArgs)Create a subtask as a new instance as the
nameattribute of this task.run(subExposure, expandedSubExposure, …[, …])Perform decorrelation operation on
subExposure, usingexpandedSubExposureto allow for invalid edge pixels arising from convolutions.timer(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Methods Documentation
- 
static 
computeCorrectedDiffimPsf(kappa, psf, svar=0.04, tvar=0.04)¶ Compute the (decorrelated) difference image’s new PSF. new_psf = psf(k) * sqrt((svar + tvar) / (svar + tvar * kappa_ft(k)**2))
- Parameters
 - kappa
numpy.ndarray A matching kernel array derived from Alard & Lupton PSF matching
- psf
numpy.ndarray The uncorrected psf array of the science image (and also of the diffim)
- svar
float, optional Average variance of science image used for PSF matching
- tvar
float, optional Average variance of template image used for PSF matching
- kappa
 - Returns
 - pcf
numpy.ndarray a 2-d numpy.array containing the new PSF
- pcf
 
- 
computeVarianceMean(exposure)¶ 
- 
emptyMetadata()¶ Empty (clear) the metadata for this Task and all sub-Tasks.
- 
getAllSchemaCatalogs()¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
- Returns
 - schemacatalogs
dict Keys are butler dataset type, values are a empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
- schemacatalogs
 
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs, not this method.
- 
getFullMetadata()¶ Get metadata for all tasks.
- Returns
 - metadata
lsst.daf.base.PropertySet The
PropertySetkeys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc..
- metadata
 
Notes
The returned metadata includes timing information (if
@timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with.replaced by:, followed by.and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- 
getFullName()¶ Get the task name as a hierarchical name including parent task names.
- Returns
 - fullName
str The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
 
- 
getSchemaCatalogs()¶ Get the schemas generated by this task.
- Returns
 - schemaCatalogs
dict Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.tableCatalog type) for this task.
- schemaCatalogs
 
See also
Task.getAllSchemaCatalogsNotes
Warning
Subclasses that use schemas must override this method. The default implemenation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- 
getTaskDict()¶ Get a dictionary of all tasks as a shallow copy.
- Returns
 - taskDict
dict Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc..
- taskDict
 
- 
classmethod 
makeField(doc)¶ Make a
lsst.pex.config.ConfigurableFieldfor this task.- Parameters
 - doc
str Help text for the field.
- doc
 - Returns
 - configurableField
lsst.pex.config.ConfigurableField A
ConfigurableFieldfor this task.
- configurableField
 
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config) aSubtask = ATaskClass.makeField("a brief description of what this task does")
- 
makeSubtask(name, **keyArgs)¶ Create a subtask as a new instance as the
nameattribute of this task.- Parameters
 - name
str Brief name of the subtask.
- keyArgs
 Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
“config”.
“parentTask”.
- name
 
Notes
The subtask must be defined by
Task.config.name, an instance of pex_config ConfigurableField or RegistryField.
- 
run(subExposure, expandedSubExposure, fullBBox, template, science, alTaskResult=None, psfMatchingKernel=None, preConvKernel=None, **kwargs)¶ Perform decorrelation operation on
subExposure, usingexpandedSubExposureto allow for invalid edge pixels arising from convolutions.This method performs A&L decorrelation on
subExposureusing local measures for image variances and PSF.subExposureis a sub-exposure of the non-decorrelated A&L diffim. It also requires the corresponding sub-exposures of the template (template) and science (science) exposures.- Parameters
 - subExposure
lsst.afw.image.Exposure the sub-exposure of the diffim
- expandedSubExposure
lsst.afw.image.Exposure the expanded sub-exposure upon which to operate
- fullBBox
lsst.geom.Box2I the bounding box of the original exposure
- template
lsst.afw.image.Exposure the corresponding sub-exposure of the template exposure
- science
lsst.afw.image.Exposure the corresponding sub-exposure of the science exposure
- alTaskResult
lsst.pipe.base.Struct the result of A&L image differencing on
scienceandtemplate, importantly containing the resultingpsfMatchingKernel. Can beNone, only ifpsfMatchingKernelis notNone.- psfMatchingKernelAlternative parameter for passing the
 A&L
psfMatchingKerneldirectly.- preConvKernelIf not None, then pre-filtering was applied
 to science exposure, and this is the pre-convolution kernel.
- kwargs :
 additional keyword arguments propagated from
ImageMapReduceTask.run.
- subExposure
 - Returns
 - A `pipeBase.Struct` containing:
 subExposure: the result of thesubExposureprocessing.decorrelationKernelthe decorrelation kernel, currentlynot used.
Notes
This
runmethod accepts parameters identical to those ofImageMapper.run, since it is called from theImageMapperTask. See that class for more information.
- 
timer(name, logLevel=10000)¶ Context manager to log performance data for an arbitrary block of code.
- Parameters
 - name
str Name of code being timed; data will be logged using item name:
StartandEnd.- logLevel
 A
lsst.loglevel constant.
- name
 
See also
timer.logInfoExamples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- 
static