DcrAssembleCoaddConnections¶
-
class
lsst.pipe.tasks.dcrAssembleCoadd.
DcrAssembleCoaddConnections
(*, config=None)¶ Bases:
lsst.pipe.base.PipelineTaskConnections
Attributes Summary
allConnections
brightObjectMask
Class used for declaring PipelineTask prerequisite connections dcrCoadds
dcrNImages
defaultTemplates
dimensions
initInputs
initOutputs
inputWarps
inputs
outputs
prerequisiteInputs
skyMap
templateExposure
Methods Summary
adjustQuantum
(datasetRefMap, …)Override to make adjustments to lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.buildDatasetRefs
(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections
= {'brightObjectMask': PrerequisiteInput(name='brightObjectMask', storageClass='ObjectMaskCatalog', doc='Input Bright Object Mask mask produced with external catalogs to be applied to the mask plane BRIGHT_OBJECT.', multiple=False, dimensions=('tract', 'patch', 'skymap', 'abstract_filter'), deferLoad=False, lookupFunction=None), 'dcrCoadds': Output(name='{fakesType}{outputCoaddName}Coadd{warpTypeSuffix}', storageClass='ExposureF', doc='Output coadded exposure, produced by stacking input warps', multiple=True, dimensions=('tract', 'patch', 'skymap', 'abstract_filter', 'subfilter')), 'dcrNImages': Output(name='{outputCoaddName}Coadd_nImage', storageClass='ImageU', doc='Output image of number of input images per pixel', multiple=True, dimensions=('tract', 'patch', 'skymap', 'abstract_filter', 'subfilter')), 'inputWarps': Input(name='{inputCoaddName}Coadd_{warpType}Warp', storageClass='ExposureF', doc='Input list of warps to be assembled i.e. stacked.WarpType (e.g. direct, psfMatched) is controlled by the warpType config parameter', multiple=True, dimensions=('tract', 'patch', 'skymap', 'visit', 'instrument'), deferLoad=True), 'skyMap': Input(name='{inputCoaddName}Coadd_skyMap', storageClass='SkyMap', doc='Input definition of geometry/bbox and projection/wcs for coadded exposures', multiple=False, dimensions=('skymap',), deferLoad=False), 'templateExposure': Input(name='{fakesType}{inputCoaddName}Coadd{warpTypeSuffix}', storageClass='ExposureF', doc='Input coadded exposure, produced by previous call to AssembleCoadd', multiple=False, dimensions=('tract', 'patch', 'skymap', 'abstract_filter'), deferLoad=False)}¶
-
brightObjectMask
¶ Class used for declaring PipelineTask prerequisite connections
Parameters: - name :
str
The default name used to identify the dataset type
- storageClass :
str
The storage class used when (un)/persisting the dataset type
- multiple :
bool
Indicates if this connection should expect to contain multiple objects of the given dataset type
- dimensions : iterable of
str
The
lsst.daf.butler.Butler
lsst.daf.butler.Registry
dimensions used to identify the dataset type identified by the specified name- deferLoad :
bool
Indicates that this dataset type will be loaded as a
lsst.daf.butler.DeferredDatasetHandle
. PipelineTasks can use this object to load the object at a later time.- lookupFunction: `typing.Callable`, optional
An optional callable function that will look up PrerequisiteInputs using the DatasetType, registry, quantum dataId, and input collections passed to it. If no function is specified, the default temporal spatial lookup will be used.
- name :
-
dcrCoadds
¶
-
dcrNImages
¶
-
defaultTemplates
= {'fakesType': '', 'inputCoaddName': 'deep', 'outputCoaddName': 'dcr', 'warpType': 'direct', 'warpTypeSuffix': ''}¶
-
dimensions
= {'tract', 'patch', 'skymap', 'abstract_filter'}¶
-
initInputs
= frozenset()¶
-
initOutputs
= frozenset()¶
-
inputWarps
¶
-
inputs
= frozenset({'templateExposure', 'inputWarps', 'skyMap'})¶
-
outputs
= frozenset({'dcrCoadds', 'dcrNImages'})¶
-
prerequisiteInputs
= frozenset({'brightObjectMask'})¶
-
skyMap
¶
-
templateExposure
¶
Methods Documentation
-
adjustQuantum
(datasetRefMap: lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]) → lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]¶ Override to make adjustments to
lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.The base class implementation simply checks that input connections with
multiple
set toFalse
have no more than one dataset.Parameters: - datasetRefMap :
NamedKeyDict
Mapping from dataset type to a
set
oflsst.daf.butler.DatasetRef
objects
Returns: - datasetRefMap :
NamedKeyDict
Modified mapping of input with possibly adjusted
lsst.daf.butler.DatasetRef
objects.
Raises: - ScalarError
Raised if any
Input
orPrerequisiteInput
connection hasmultiple
set toFalse
, but multiple datasets.- Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs
(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum
Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tuple
of (InputQuantizedConnection
, OutputQuantizedConnection
) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-