TransformSourceTableTask

TransformSourceTableTask transforms the full-width source table (a source dataset) to a narrower Source Table (a sourceTable dataset) as specified by the Data Products Definition Document (DPDD). It extracts, transforms, and renames columns per a yaml specification, by default the Source.yaml in obs_package/policy. Inputs and outpus are both per-detector. The input is typically a wide table and output a narrow table appropriate for concatenating into a per-visit table by ConsolidateSourceTableTask.

It is the second of three postprocessing tasks to convert a src table to a per-visit Source Table that conforms to the standard data model. The first is WriteSourceTableTask, and the third is ConsolidateSourceTableTask.

TransformSourceTableTask is available as a command-line task, transformSourceTableTask.py.

Processing summary

TransformSourceTableTask

  1. Read in source.

#. Generate functors (by instantiating a lsst.pipe.tasks.functors.CompositeFunctor) from the yaml specification. Apply functors to the columns.

  1. Store output DataFrame in parquet-formatted sourceTable

transformSourceTableTask.py command-line interface

transformSourceTableTask.py REPOPATH [@file [@file2 ...]] [--output OUTPUTREPO | --rerun RERUN] [--id] [other options]

Key arguments:

REPOPATH

The input Butler repository’s URI or file path.

Key options:

--id:

The data IDs to process.

See also

See Command-line task argument reference for details and additional options.

Python API summary

from lsst.pipe.tasks.postprocess import TransformSourceTableTask
classTransformSourceTableTask(*args, **kwargs)

Transform/standardize a source catalog...

attributeconfig

Access configuration fields and retargetable subtasks.

methodrun(parq, funcs=None, dataId=None, band=None)

Do postprocessing calculations...

methodrunDataRef(dataRef)

Override to specify band label to run()...

See also

See the TransformSourceTableTask API reference for complete details.

Butler datasets

When run as the transformSourceTableTask.py command-line task, or directly through the runDataRef method, TransformSourceTableTask obtains datasets from the input Butler data repository and persists outputs to the output Butler data repository. Note that configurations for TransformSourceTableTask, and its subtasks, affect what datasets are persisted and what their content is.

Input datasets

source

Full-width parquet version of the src catalog. It is generated by WriteSourceTableTask

Output datasets

sourceTable

Source Table in parquet format (per-detector)

Retargetable subtasks

No subtasks.

Configuration fields

connections

Data type

lsst.pipe.base.config.Connections

Field type

ConfigField

Configurations describing the connections of the PipelineTask to datatypes

functorFile

Default
None
Field type

str Field (optional)

Path to YAML file specifying functors to be computed

saveMetadata

Default
True
Field type

bool Field

Flag to enable/disable metadata saving for a task, enabled by default.

Examples

The following command shows an example of how to run the task on an example HSC repository.

transformSourceTable.py /datasets/hsc/repo  --calib /datasets/hsc/repo/CALIB --rerun <rerun name> --id visit=30504  ccd=0..8^10..103

Using the python API

import os
from lsst.utils import getPackageDir
from lsst.daf.persistence import Butler
from lsst.pipe.tasks.postprocess import TransformSourceTableTask

# get input catalogs
butler = Butler('/path/to/repo')
dataId = {'visit': 30504, 'ccd': 51}
source = butler.get('source', dataId=dataId)

# setup task using the obs_subaru Source.yaml specification
config =  TransformSourceTableTask.ConfigClass()
config.functorFile = os.path.join(getPackageDir("obs_subaru"), 'policy', 'Source.yaml')
task = TransformSourceTableTask(config=config)
defaultFunctors = task.getFunctors()

# run the task to get a DataFrame
df = task.run(source, funcs=defaultFunctors, dataId=dataId)

You may also specify your own functors to apply:

import yaml
from  lsst.pipe.tasks.functors import CompositeFunctor

str = """
funcs:
    ApFlux:
        functor: LocalNanojansky
        args:
            - slot_CalibFlux_instFlux
            - slot_CalibFlux_instFluxErr
            - base_LocalPhotoCalib
            - base_LocalPhotoCalibErr
    ApFluxErr:
        functor: LocalNanojanskyErr
        args:
            - slot_CalibFlux_instFlux
            - slot_CalibFlux_instFluxErr
            - base_LocalPhotoCalib
            - base_LocalPhotoCalibErr
"""
exampleFunctors = CompositeFunctor.from_yaml(yaml.load(str))
df = task.run(source, funcs=exampleFunctors, dataId=dataId)