MetricsControllerTask¶
MetricsControllerTask
runs collections of lsst.verify.tasks.MetricTask
, and stores the resulting Measurement
objects using the Job
persistence framework.
It is a stand-in for functionality provided by the Gen 3 Tasks framework.
The datasets that MetricsControllerTask
consumes depend on the MetricTask
s to be run, and are handled automatically.
MetricsControllerTask
is not a command-line task, but may be called from within both task- and non-task pipelines.
Processing summary¶
Unlike most tasks, MetricsControllerTask
has a runDataRefs
method that takes a list of data references.
MetricsControllerTask
calls every MetricTask
in measurers
on every data reference, loading any datasets necessary.
It produces one Job
object for each input data reference, and writes them to disk.
Python API summary¶
from lsst.verify.gen2tasks.metricsControllerTask import MetricsControllerTask
-
class
(config=None, **kwargs)MetricsControllerTask
A Task for executing a collection of `lsst.verify.tasks.MetricTask` objects
...
-
attribute
config
Access configuration fields and retargetable subtasks.
See also
See the MetricsControllerTask
API reference for complete details.
Configuration fields¶
jobFileTemplate¶
A template for the path to which the measurements are written. {id} is replaced with a unique index (recommended), while {dataId} is replaced with the data ID.
In Depth¶
Because MetricsControllerTask
applies every MetricTask
to every input data reference indiscriminately, it may not give good results with metrics or data references having a mixture of granularities (e.g., CCD-level, visit-level, dataset-level).
The recommended way around this limitation is to create multiple MetricsControllerTask
objects, and configure each one for metrics of a single granularity.
Each MetricTask
in a MetricsControllerTask
must measure a different metric, or they will overwrite each others’ values.
Examples¶
Typically, a user of MetricsControllerTask
will configure it with tasks that have register
decorator:
from lsst.verify.gen2tasks import register, \
MetricsControllerTask
from lsst.verify.tasks import MetricTask
@register("ultimate")
class UltimateMetric(MetricTask):
...
@register("second")
class SecondaryMetric(MetricTask):
...
config = MetricsControllerTask.ConfigClass()
config.measurers = ["ultimate", "second"]
config.measurers["ultimate"].answer = 42
task = MetricsControllerTask(config)
# CCD-level metrics need CCD-level datarefs
# Exact dataset type doesn't matter
datarefs = [butler.subset("calexp", visit=42, ccd=ccd)
for ccd in range(1, 101)]
struct = task.runDataRefs(datarefs)
assert len(struct.jobs) == len(datarefs)
A MetricTask
must have the registerMultiple
decorator to be used multiple times:
from lsst.verify.gen2tasks import registerMultiple, MetricsControllerTask
from lsst.verify.tasks import MetricTask
@registerMultiple("common")
class CommonMetric(MetricTask):
...
config = MetricsControllerTask.ConfigClass()
config.measurers = ["common"]
config.measurers["common"].configs["case1"] = CommonMetric.ConfigClass()
config.measurers["common"].configs["case1"].metric = "misc_tasks.Case1Metric"
config.measurers["common"].configs["case2"] = CommonMetric.ConfigClass()
config.measurers["common"].configs["case2"].metric = "misc_tasks.Case2Metric"
task = MetricsControllerTask(config)
MetricsControllerTask
will create and run two different CommonMetric
objects, one configured with metric = "misc_tasks.Case1Metric"
and one with metric = "misc_tasks.Case2Metric"
.
The names "case1"
and "case2"
can be anything, so long as they are unique.