Datastore¶
-
class
lsst.daf.butler.Datastore(config: Union[Config, str], bridgeManager: DatastoreRegistryBridgeManager, butlerRoot: str = None)¶ Bases:
objectDatastore interface.
- Parameters
- config
DatastoreConfigorstr Load configuration either from an existing config instance or by referring to a configuration file.
- bridgeManager
DatastoreRegistryBridgeManager Object that manages the interface between
Registryand datastores.- butlerRoot
str, optional New datastore root to use to override the configuration value.
- config
Attributes Summary
Name of the key containing a list of subconfigurations that also need to be merged with defaults and will likely use different Python datastore classes (but all using DatastoreConfig).
Path to configuration defaults.
Indicate whether this Datastore is ephemeral or not.
Names associated with this datastore returned as a list.
Methods Summary
emptyTrash([ignore_errors])Remove all datasets from the trash.
exists(datasetRef)Check if the dataset exists in the datastore.
export(refs, *[, directory, transfer])Export datasets for transfer to another data repository.
forget(refs)Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them.
fromConfig(config, bridgeManager[, butlerRoot])Create datastore from type specified in config file.
get(datasetRef[, parameters])Load an
InMemoryDatasetfrom the store.Return all the lookup keys relevant to this datastore.
getURI(datasetRef[, predict])URI to the Dataset.
getURIs(datasetRef[, predict])Return URIs associated with dataset.
ingest(*datasets[, transfer])Ingest one or more files into the datastore.
needs_expanded_data_ids(transfer[, entity])Test whether this datastore needs expanded data IDs to ingest.
put(inMemoryDataset, datasetRef)Write a
InMemoryDatasetwith a givenDatasetRefto the store.remove(datasetRef)Indicate to the Datastore that a Dataset can be removed.
setConfigRoot(root, config, full[, overwrite])Set filesystem-dependent config options for this datastore.
Context manager supporting
Datastoretransactions.transfer(inputDatastore, datasetRef)Transfer a dataset from another datastore to this datastore.
trash(datasetRef[, ignore_errors])Indicate to the Datastore that a Dataset can be moved to the trash.
validateConfiguration(entities[, logFailures])Validate some of the configuration for this datastore.
validateKey(lookupKey, entity)Validate a specific look up key with supplied entity.
Attributes Documentation
-
containerKey: ClassVar[Optional[str]] = None¶ Name of the key containing a list of subconfigurations that also need to be merged with defaults and will likely use different Python datastore classes (but all using DatastoreConfig). Assumed to be a list of configurations that can be represented in a DatastoreConfig and containing a “cls” definition. None indicates that no containers are expected in this Datastore.
-
defaultConfigFile: ClassVar[Optional[str]] = None¶ Path to configuration defaults. Accessed within the
configresource or relative to a search path. Can be None if no defaults specified.
-
isEphemeral: bool = False¶ Indicate whether this Datastore is ephemeral or not. An ephemeral datastore is one where the contents of the datastore will not exist across process restarts. This value can change per-instance.
-
names¶ Names associated with this datastore returned as a list.
Can be different to
namefor a chaining datastore.
Methods Documentation
-
abstract
emptyTrash(ignore_errors: bool = True) → None¶ Remove all datasets from the trash.
- Parameters
- ignore_errors
bool, optional Determine whether errors should be ignored.
- ignore_errors
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
-
abstract
exists(datasetRef: DatasetRef) → bool¶ Check if the dataset exists in the datastore.
- Parameters
- datasetRef
DatasetRef Reference to the required dataset.
- datasetRef
- Returns
-
export(refs: Iterable[DatasetRef], *, directory: Optional[str] = None, transfer: Optional[str] = None) → Iterable[FileDataset]¶ Export datasets for transfer to another data repository.
- Parameters
- refsiterable of
DatasetRef Dataset references to be exported.
- directory
str, optional Path to a directory that should contain files corresponding to output datasets. Ignored if
transferisNone.- transfer
str, optional Mode that should be used to move datasets out of the repository. Valid options are the same as those of the
transferargument toingest, and datastores may similarly signal that a transfer mode is not supported by raisingNotImplementedError.
- refsiterable of
- Returns
- datasetiterable of
DatasetTransfer Structs containing information about the exported datasets, in the same order as
refs.
- datasetiterable of
- Raises
- NotImplementedError
Raised if the given transfer mode is not supported.
-
abstract
forget(refs: Iterable[DatasetRef]) → None¶ Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them.
- Parameters
- refs
Iterable[DatasetRef] References to the datasets being forgotten.
- refs
Notes
Asking a datastore to forget a
DatasetRefit does not hold should be a silent no-op, not an error.
-
static
fromConfig(config: Config, bridgeManager: DatastoreRegistryBridgeManager, butlerRoot: Optional[Union[str, ButlerURI]] = None) → Datastore¶ Create datastore from type specified in config file.
-
abstract
get(datasetRef: DatasetRef, parameters: Mapping[str, Any] = None) → Any¶ Load an
InMemoryDatasetfrom the store.- Parameters
- datasetRef
DatasetRef Reference to the required Dataset.
- parameters
dict StorageClass-specific parameters that specify a slice of the Dataset to be loaded.
- datasetRef
- Returns
- inMemoryDataset
object Requested Dataset or slice thereof as an InMemoryDataset.
- inMemoryDataset
-
abstract
getLookupKeys() → Set[LookupKey]¶ Return all the lookup keys relevant to this datastore.
- Returns
- keys
setofLookupKey The keys stored internally for looking up information based on
DatasetTypename orStorageClass.
- keys
-
abstract
getURI(datasetRef: DatasetRef, predict: bool = False) → ButlerURI¶ URI to the Dataset.
- Parameters
- datasetRef
DatasetRef Reference to the required Dataset.
- predict
bool If
Trueattempt to predict the URI for a dataset if it does not exist in datastore.
- datasetRef
- Returns
- uri
str URI string pointing to the Dataset within the datastore. If the Dataset does not exist in the datastore, the URI may be a guess. If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
- uri
- Raises
- FileNotFoundError
A URI has been requested for a dataset that does not exist and guessing is not allowed.
-
abstract
getURIs(datasetRef: DatasetRef, predict: bool = False) → Tuple[Optional[ButlerURI], Dict[str, ButlerURI]]¶ Return URIs associated with dataset.
- Parameters
- ref
DatasetRef Reference to the required dataset.
- predict
bool, optional If the datastore does not know about the dataset, should it return a predicted URI or not?
- ref
- Returns
-
ingest(*datasets:lsst.daf.butler.FileDataset, transfer: Optional[str] = None) → None¶ Ingest one or more files into the datastore.
- Parameters
- datasets
FileDataset Each positional argument is a struct containing information about a file to be ingested, including its path (either absolute or relative to the datastore root, if applicable), a complete
DatasetRef(withdataset_id not None), and optionally a formatter class or its fully-qualified string name. If a formatter is not provided, the one the datastore would use forputon that dataset is assumed.- transfer
str, optional How (and whether) the dataset should be added to the datastore. If
None(default), the file must already be in a location appropriate for the datastore (e.g. within its root directory), and will not be modified. Other choices include “move”, “copy”, “link”, “symlink”, “relsymlink”, and “hardlink”. “link” is a special transfer mode that will first try to make a hardlink and if that fails a symlink will be used instead. “relsymlink” creates a relative symlink rather than use an absolute path. Most datastores do not support all transfer modes. “auto” is a special option that will let the data store choose the most natural option for itself.
- datasets
- Raises
- NotImplementedError
Raised if the datastore does not support the given transfer mode (including the case where ingest is not supported at all).
- DatasetTypeNotSupportedError
Raised if one or more files to be ingested have a dataset type that is not supported by the datastore.
- FileNotFoundError
Raised if one of the given files does not exist.
- FileExistsError
Raised if transfer is not
Nonebut the (internal) location the file would be moved to is already occupied.
Notes
Subclasses should implement
_prepIngestand_finishIngestinstead of implementingingestdirectly. Datastores that hold and delegate to child datastores may want to call those methods as well.Subclasses are encouraged to document their supported transfer modes in their class documentation.
-
needs_expanded_data_ids(transfer: Optional[str], entity: Optional[Union[DatasetRef, DatasetType, StorageClass]] = None) → bool¶ Test whether this datastore needs expanded data IDs to ingest.
- Parameters
- Returns
-
abstract
put(inMemoryDataset: Any, datasetRef: DatasetRef) → None¶ Write a
InMemoryDatasetwith a givenDatasetRefto the store.- Parameters
- inMemoryDataset
object The Dataset to store.
- datasetRef
DatasetRef Reference to the associated Dataset.
- inMemoryDataset
-
abstract
remove(datasetRef: DatasetRef) → None¶ Indicate to the Datastore that a Dataset can be removed.
- Parameters
- datasetRef
DatasetRef Reference to the required Dataset.
- datasetRef
- Raises
- FileNotFoundError
When Dataset does not exist.
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
-
abstract classmethod
setConfigRoot(root: str, config:lsst.daf.butler.Config, full:lsst.daf.butler.Config, overwrite: bool = True) → None¶ Set filesystem-dependent config options for this datastore.
The options will be appropriate for a new empty repository with the given root.
- Parameters
- root
str Filesystem path to the root of the data repository.
- config
Config A
Configto update. Only the subset understood by this component will be updated. Will not expand defaults.- full
Config A complete config with all defaults expanded that can be converted to a
DatastoreConfig. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied fromfulltoconfig.- overwrite
bool, optional If
False, do not modify a value inconfigif the value already exists. Default is always to overwrite with the providedroot.
- root
Notes
If a keyword is explicitly defined in the supplied
configit will not be overridden by this method ifoverwriteisFalse. This allows explicit values set in external configs to be retained.
-
transaction() → Iterator[lsst.daf.butler.core.datastore.DatastoreTransaction]¶ Context manager supporting
Datastoretransactions.Transactions can be nested, and are to be used in combination with
Registry.transaction.
-
abstract
transfer(inputDatastore: Datastore, datasetRef: DatasetRef) → None¶ Transfer a dataset from another datastore to this datastore.
- Parameters
- inputDatastore
Datastore The external
Datastorefrom which to retrieve the Dataset.- datasetRef
DatasetRef Reference to the required Dataset.
- inputDatastore
-
abstract
trash(datasetRef: DatasetRef, ignore_errors: bool = True) → None¶ Indicate to the Datastore that a Dataset can be moved to the trash.
- Parameters
- datasetRef
DatasetRef Reference to the required Dataset.
- ignore_errors
bool, optional Determine whether errors should be ignored.
- datasetRef
- Raises
- FileNotFoundError
When Dataset does not exist.
Notes
Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces.
-
abstract
validateConfiguration(entities: Iterable[Union[DatasetRef, DatasetType, StorageClass]], logFailures: bool = False) → None¶ Validate some of the configuration for this datastore.
- Parameters
- entitiesiterable of
DatasetRef,DatasetType, orStorageClass Entities to test against this configuration. Can be differing types.
- logFailures
bool, optional If
True, output a log message for every validation error detected.
- entitiesiterable of
- Raises
- DatastoreValidationError
Raised if there is a validation problem with a configuration.
Notes
Which parts of the configuration are validated is at the discretion of each Datastore implementation.
-
abstract
validateKey(lookupKey: LookupKey, entity: Union[DatasetRef, DatasetType, StorageClass]) → None¶ Validate a specific look up key with supplied entity.
- Parameters
- lookupKey
LookupKey Key to use to retrieve information from the datastore configuration.
- entity
DatasetRef,DatasetType, orStorageClass Entity to compare with configuration retrieved using the specified lookup key.
- lookupKey
- Raises
- DatastoreValidationError
Raised if there is a problem with the combination of entity and lookup key.
Notes
Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated.