SerializedDimensionGraph¶
-
class
lsst.daf.butler.
SerializedDimensionGraph
(*, names: List[str])¶ Bases:
pydantic.main.BaseModel
Simplified model of a
DimensionGraph
suitable for serialization.Methods Summary
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(*[, include, exclude, by_alias, …])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_orm
(obj)json
(*[, include, exclude, by_alias, …])Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.parse_file
(path, *[, content_type, …])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, …])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Methods Documentation
-
classmethod
construct
(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if
Config.extra = 'allow'
was set since it adds all passed values
-
copy
(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, update: DictStrAny = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to
True
to make a deep copy of the model
- Returns
new model instance
-
dict
(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
-
classmethod
from_orm
(obj: Any) → Model¶
-
json
(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.encoder
is an optional function to supply asdefault
to json.dumps(), other arguments as perjson.dumps()
.
-
classmethod
parse_file
(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
parse_obj
(obj: Any) → Model¶
-
classmethod
parse_raw
(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) → Model¶
-
classmethod
schema
(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
-
classmethod
schema_json
(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
-
classmethod
update_forward_refs
(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns.
-
classmethod
validate
(value: Any) → Model¶
-
classmethod