SerializedDimensionGraph

class lsst.daf.butler.SerializedDimensionGraph(*, names: List[str])

Bases: pydantic.main.BaseModel

Simplified model of a DimensionGraph suitable for serialization.

Methods Summary

construct([_fields_set])

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.

copy(*[, include, exclude, update, deep])

Duplicate a model, optionally choose which fields to include, exclude and change.

dict(*[, include, exclude, by_alias, …])

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

from_orm(obj)

json(*[, include, exclude, by_alias, …])

Generate a JSON representation of the model, include and exclude arguments as per dict().

parse_file(path, *[, content_type, …])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, …])

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

Try to update ForwardRefs on fields based on this Model, globalns and localns.

validate(value)

Methods Documentation

classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any)Model

Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = 'allow' was set since it adds all passed values

copy(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, update: DictStrAny = None, deep: bool = False)Model

Duplicate a model, optionally choose which fields to include, exclude and change.

Parameters
  • include – fields to include in new model

  • exclude – fields to exclude from new model, as with values this takes precedence over include

  • update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data

  • deep – set to True to make a deep copy of the model

Returns

new model instance

dict(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False)DictStrAny

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

classmethod from_orm(obj: Any)Model
json(*, include: Union[AbstractSetIntStr, MappingIntStrAny] = None, exclude: Union[AbstractSetIntStr, MappingIntStrAny] = None, by_alias: bool = False, skip_defaults: bool = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, **dumps_kwargs: Any)unicode

Generate a JSON representation of the model, include and exclude arguments as per dict().

encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().

classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False)Model
classmethod parse_obj(obj: Any)Model
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False)Model
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}')DictStrAny
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any)unicode
classmethod update_forward_refs(**localns: Any)None

Try to update ForwardRefs on fields based on this Model, globalns and localns.

classmethod validate(value: Any)Model