TractMultiBandMeasurementTaskConnections

class lsst.faro.measurement.TractMultiBandMeasurementTaskConnections(*, config: PipelineTaskConfig = None)

Bases: lsst.faro.measurement.TractMeasurementTaskConnections

Attributes Summary

allConnections

cat

defaultTemplates

dimensions

initInputs

initOutputs

inputs

measurement

outputs

photo_calibs

prerequisiteInputs

Methods Summary

adjustQuantum(datasetRefMap)

Override to make adjustments to lsst.daf.butler.DatasetRef objects in the lsst.daf.butler.core.Quantum during the graph generation stage of the activator.

buildDatasetRefs(quantum)

Builds QuantizedConnections corresponding to input Quantum

Attributes Documentation

allConnections = {'cat': Input(name='deepCoadd_forced_src', storageClass='SourceCatalog', doc='Object catalog.', multiple=True, dimensions=('tract', 'skymap', 'patch', 'band'), isCalibration=False, deferLoad=False), 'measurement': Output(name='metricvalue_{package}_{metric}', storageClass='MetricValue', doc='Per-tract measurement.', multiple=False, dimensions=('tract', 'skymap'), isCalibration=False), 'photo_calibs': Input(name='{photoCalibName}', storageClass='PhotoCalib', doc='Photometric calibration object.', multiple=True, dimensions=('tract', 'skymap', 'patch', 'band'), isCalibration=False, deferLoad=False)}
cat
defaultTemplates = {'coaddName': 'deepCoadd', 'metric': None, 'package': None, 'photoCalibName': 'deepCoadd_calexp.photoCalib'}
dimensions = {'skymap', 'tract'}
initInputs = frozenset({})
initOutputs = frozenset({})
inputs = frozenset({'cat', 'photo_calibs'})
measurement
outputs = frozenset({'measurement'})
photo_calibs
prerequisiteInputs = frozenset({})

Methods Documentation

adjustQuantum(datasetRefMap: lsst.daf.butler.NamedKeyDict[lsst.daf.butler.DatasetType, Set[lsst.daf.butler.DatasetRef]])lsst.daf.butler.NamedKeyDict[lsst.daf.butler.DatasetType, Set[lsst.daf.butler.DatasetRef]]

Override to make adjustments to lsst.daf.butler.DatasetRef objects in the lsst.daf.butler.core.Quantum during the graph generation stage of the activator.

The base class implementation simply checks that input connections with multiple set to False have no more than one dataset.

Parameters
datasetRefMapNamedKeyDict

Mapping from dataset type to a set of lsst.daf.butler.DatasetRef objects

Returns
datasetRefMapNamedKeyDict

Modified mapping of input with possibly adjusted lsst.daf.butler.DatasetRef objects.

Raises
ScalarError

Raised if any Input or PrerequisiteInput connection has multiple set to False, but multiple datasets.

Exception

Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.

buildDatasetRefs(quantum: lsst.daf.butler.Quantum)Tuple[lsst.pipe.base.InputQuantizedConnection, lsst.pipe.base.OutputQuantizedConnection]

Builds QuantizedConnections corresponding to input Quantum

Parameters
quantumlsst.daf.butler.Quantum

Quantum object which defines the inputs and outputs for a given unit of processing

Returns
retValtuple of (InputQuantizedConnection,

OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the input lsst.daf.butler.Quantum