ApdbMetricConnections¶
- 
class lsst.verify.tasks.ApdbMetricConnections(*, config: PipelineTaskConfig = None)¶
- Bases: - lsst.verify.tasks.MetricConnections- An abstract connections class defining a database input. - Notes - ApdbMetricConnectionsdefines the following dataset templates:
- package
- Name of the metric’s namespace. By verify_metrics convention, this is the name of the package the metric is most closely associated with. 
- metric
- Name of the metric, excluding any namespace. 
 
 - Attributes Summary - Methods Summary - adjustQuantum(datasetRefMap)- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- buildDatasetRefs(quantum)- Builds QuantizedConnections corresponding to input Quantum - Attributes Documentation - 
allConnections= {'dbInfo': Input(name='apdb_marker', storageClass='Config', doc='The dataset from which an APDB instance can be constructed by `dbLoader`. By default this is assumed to be a marker produced by AP processing.', multiple=True, dimensions={'visit', 'detector', 'instrument'}, isCalibration=False, deferLoad=False), 'measurement': Output(name='metricvalue_{package}_{metric}', storageClass='MetricValue', doc='The metric value computed by this task.', multiple=False, dimensions={'instrument'}, isCalibration=False)}¶
 - 
dbInfo¶
 - 
defaultTemplates= {'metric': None, 'package': None}¶
 - 
dimensions= {'instrument'}¶
 - 
initInputs= frozenset({})¶
 - 
initOutputs= frozenset({})¶
 - 
inputs= frozenset({'dbInfo'})¶
 - 
measurement¶
 - 
outputs= frozenset({'measurement'})¶
 - 
prerequisiteInputs= frozenset({})¶
 - Methods Documentation - 
adjustQuantum(datasetRefMap:lsst.daf.butler.NamedKeyDict[lsst.daf.butler.DatasetType, Set[lsst.daf.butler.DatasetRef]]) →lsst.daf.butler.NamedKeyDict[lsst.daf.butler.DatasetType, Set[lsst.daf.butler.DatasetRef]]¶
- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- The base class implementation simply checks that input connections with - multipleset to- Falsehave no more than one dataset.- Parameters
- datasetRefMapNamedKeyDict
- Mapping from dataset type to a - setof- lsst.daf.butler.DatasetRefobjects
 
- datasetRefMap
- Returns
- datasetRefMapNamedKeyDict
- Modified mapping of input with possibly adjusted - lsst.daf.butler.DatasetRefobjects.
 
- datasetRefMap
- Raises
- ScalarError
- Raised if any - Inputor- PrerequisiteInputconnection has- multipleset to- False, but multiple datasets.
- Exception
- Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found. 
 
 
 - 
buildDatasetRefs(quantum:lsst.daf.butler.Quantum) → Tuple[lsst.pipe.base.InputQuantizedConnection,lsst.pipe.base.OutputQuantizedConnection]¶
- Builds QuantizedConnections corresponding to input Quantum - Parameters
- quantumlsst.daf.butler.Quantum
- Quantum object which defines the inputs and outputs for a given unit of processing 
 
- quantum
- Returns
- retValtupleof (InputQuantizedConnection,
- OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the input- lsst.daf.butler.Quantum
 
- retVal