SingleMetadataMetricConnections¶
-
class
lsst.verify.tasks.SingleMetadataMetricConnections(*, config=None)¶ Bases:
lsst.verify.tasks.MetricConnectionsAn abstract connections class defining a metadata input.
Notes
SingleMetadataMetricConnectionsdefines the following dataset templates:packageName of the metric’s namespace. By verify_metrics convention, this is the name of the package the metric is most closely associated with.
metricName of the metric, excluding any namespace.
labelNamePipeline label of the
PipelineTaskor name of theCmdLineTaskwhose metadata are being read.
Attributes Summary
Methods Summary
adjustQuantum(datasetRefMap)Override to make adjustments to
lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.buildDatasetRefs(quantum)Builds QuantizedConnections corresponding to input Quantum
Attributes Documentation
-
allConnections= {'measurement': Output(name='metricvalue_{package}_{metric}', storageClass='MetricValue', doc='The metric value computed by this task.', multiple=False, dimensions={'visit', 'detector', 'instrument'}, isCalibration=False), 'metadata': Input(name='{labelName}_metadata', storageClass='PropertySet', doc="The target top-level task's metadata. The name must be set to the metadata's butler type, such as 'processCcd_metadata'.", multiple=False, dimensions={'visit', 'detector', 'instrument'}, isCalibration=False, deferLoad=False)}¶
-
defaultTemplates= {'labelName': '', 'metric': None, 'package': None}¶
-
dimensions= {'detector', 'instrument', 'visit'}¶
-
initInputs= frozenset({})¶
-
initOutputs= frozenset({})¶
-
inputs= frozenset({'metadata'})¶
-
measurement¶
-
metadata¶
-
outputs= frozenset({'measurement'})¶
-
prerequisiteInputs= frozenset({})¶
Methods Documentation
-
adjustQuantum(datasetRefMap:lsst.daf.butler.NamedKeyDict[lsst.daf.butler.DatasetType, Set[lsst.daf.butler.DatasetRef]]) →lsst.daf.butler.NamedKeyDict[lsst.daf.butler.DatasetType, Set[lsst.daf.butler.DatasetRef]]¶ Override to make adjustments to
lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.The base class implementation simply checks that input connections with
multipleset toFalsehave no more than one dataset.- Parameters
- datasetRefMap
NamedKeyDict Mapping from dataset type to a
setoflsst.daf.butler.DatasetRefobjects
- datasetRefMap
- Returns
- datasetRefMap
NamedKeyDict Modified mapping of input with possibly adjusted
lsst.daf.butler.DatasetRefobjects.
- datasetRefMap
- Raises
- ScalarError
Raised if any
InputorPrerequisiteInputconnection hasmultipleset toFalse, but multiple datasets.- Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
-
buildDatasetRefs(quantum:lsst.daf.butler.Quantum) → Tuple[lsst.pipe.base.InputQuantizedConnection,lsst.pipe.base.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
- Parameters
- quantum
lsst.daf.butler.Quantum Quantum object which defines the inputs and outputs for a given unit of processing
- quantum
- Returns
- retVal
tupleof (InputQuantizedConnection, OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- retVal