LocalDipoleDiffFluxErr¶
-
class
lsst.pipe.tasks.functors.LocalDipoleDiffFluxErr(instFluxPosCol, instFluxNegCol, instFluxPosErrCol, instFluxNegErrCol, photoCalibCol, photoCalibErrCol, **kwargs)¶ Bases:
lsst.pipe.tasks.functors.LocalDipoleMeanFluxCompute the error on the absolute difference of dipole fluxes.
See also
Attributes Summary
columnsColumns required to perform calculation logNJanskyToABnameFull name of functor (suitable for figure labels) noDupshortnameShort name of functor (suitable for column name/dict key) Methods Summary
__call__(data[, dropna])Call self as a function. difference(data1, data2, **kwargs)Computes difference between functor called on two different ParquetTable objects fail(df)instFluxErrToMagnitudeErr(instFlux, …)Convert instrument flux err to nanojanskys. instFluxErrToNanojanskyErr(instFlux, …)Convert instrument flux to nanojanskys. instFluxToMagnitude(instFlux, localCalib)Convert instrument flux to nanojanskys. instFluxToNanojansky(instFlux, localCalib)Convert instrument flux to nanojanskys. multilevelColumns(data[, columnIndex, …])Returns columns needed by functor from multilevel dataset Attributes Documentation
-
columns¶ Columns required to perform calculation
-
logNJanskyToAB= 31.4¶
-
name¶ Full name of functor (suitable for figure labels)
-
noDup¶
-
shortname¶ Short name of functor (suitable for column name/dict key)
Methods Documentation
-
__call__(data, dropna=False)¶ Call self as a function.
-
difference(data1, data2, **kwargs)¶ Computes difference between functor called on two different ParquetTable objects
-
fail(df)¶
-
instFluxErrToMagnitudeErr(instFlux, instFluxErr, localCalib, localCalibErr)¶ Convert instrument flux err to nanojanskys.
Parameters: - instFlux :
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- instFluxErr :
numpy.ndarrayorpandas.Series Errors on associated
instFluxvalues- localCalib :
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
- localCalibErr :
numpy.ndarrayorpandas.Series Errors on associated
localCalibvalues
Returns: - calibMagErr:
numpy.ndarrayorpandas.Series Error on calibrated AB magnitudes.
- instFlux :
-
instFluxErrToNanojanskyErr(instFlux, instFluxErr, localCalib, localCalibErr)¶ Convert instrument flux to nanojanskys.
Parameters: - instFlux :
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- instFluxErr :
numpy.ndarrayorpandas.Series Errors on associated
instFluxvalues- localCalib :
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
- localCalibErr :
numpy.ndarrayorpandas.Series Errors on associated
localCalibvalues
Returns: - calibFluxErr :
numpy.ndarrayorpandas.Series Errors on calibrated flux measurements.
- instFlux :
-
instFluxToMagnitude(instFlux, localCalib)¶ Convert instrument flux to nanojanskys.
Parameters: - instFlux :
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- localCalib :
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
Returns: - calibMag :
numpy.ndarrayorpandas.Series Array of calibrated AB magnitudes.
- instFlux :
-
instFluxToNanojansky(instFlux, localCalib)¶ Convert instrument flux to nanojanskys.
Parameters: - instFlux :
numpy.ndarrayorpandas.Series Array of instrument flux measurements
- localCalib :
numpy.ndarrayorpandas.Series Array of local photometric calibration estimates.
Returns: - calibFlux :
numpy.ndarrayorpandas.Series Array of calibrated flux measurements.
- instFlux :
-
multilevelColumns(data, columnIndex=None, returnTuple=False)¶ Returns columns needed by functor from multilevel dataset
To access tables with multilevel column structure, the
MultilevelParquetTableorDeferredDatasetHandleneed to be passed either a list of tuples or a dictionary.Parameters: - data :
MultilevelParquetTableorDeferredDatasetHandle - columnIndex (optional): pandas `Index` object
either passed or read in from
DeferredDatasetHandle.- `returnTuple` : bool
If true, then return a list of tuples rather than the column dictionary specification. This is set to
TruebyCompositeFunctorin order to be able to combine columns from the various component functors.
- data :
-