CrosstalkSolveTask¶
- class lsst.cp.pipe.CrosstalkSolveTask(*, config: PipelineTaskConfig | None = None, log: logging.Logger | LsstLogAdapter | None = None, initInputs: dict[str, Any] | None = None, **kwargs: Any)¶
Bases:
PipelineTask
Task to solve crosstalk from pixel ratios.
Attributes Summary
Methods Summary
debugRatios
(stepname, ratios, i, j[, coeff, ...])Utility function to examine the final CT ratio set.
Empty (clear) the metadata for this Task and all sub-Tasks.
filterCrosstalkCalib
(inCalib)Apply valid constraints to the measured values.
Get metadata for all tasks.
Get the task name as a hierarchical name including parent task names.
getName
()Get the name of the task.
Get a dictionary of all tasks as a shallow copy.
makeField
(doc)Make a
lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the
name
attribute of this task.measureCrosstalkCoefficients
(ratios, ...)Measure crosstalk coefficients from the ratios.
run
(inputRatios[, inputFluxes, camera, ...])Combine ratios to produce crosstalk coefficients.
runQuantum
(butlerQC, inputRefs, outputRefs)Ensure that the input and output dimensions are passed along.
timer
(name[, logLevel])Context manager to log performance data for an arbitrary block of code.
Attributes Documentation
Methods Documentation
- debugRatios(stepname, ratios, i, j, coeff=0.0, valid=False)¶
Utility function to examine the final CT ratio set.
- Parameters:
- stepname
str
State of processing to view.
- ratios
dict
[dict
[numpy.ndarray
]] Array of measured CT ratios, indexed by source/victim amplifier. These arrays are one-dimensional.
- i
str
Index of the source amplifier.
- j
str
Index of the target amplifier.
- coeff
float
, optional Coefficient calculated to plot along with the simple mean.
- valid
bool
, optional Validity to be added to the plot title.
- stepname
- static filterCrosstalkCalib(inCalib)¶
Apply valid constraints to the measured values.
Any measured coefficient that is determined to be invalid is set to zero, and has the error set to nan. The validation is determined by checking that the measured coefficient is larger than the calculated standard error of the mean.
- Parameters:
- inCalib
lsst.ip.isr.CrosstalkCalib
Input calibration to filter.
- inCalib
- Returns:
- outCalib
lsst.ip.isr.CrosstalkCalib
Filtered calibration.
- outCalib
- getFullMetadata() TaskMetadata ¶
Get metadata for all tasks.
- Returns:
- metadata
TaskMetadata
The keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
- metadata
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- getFullName() str ¶
Get the task name as a hierarchical name including parent task names.
- Returns:
- fullName
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
The full name of top-level task “top” is simply “top”.
The full name of subtask “sub” of top-level task “top” is “top.sub”.
The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName
- getTaskDict() dict[str, weakref.ReferenceType[lsst.pipe.base.task.Task]] ¶
Get a dictionary of all tasks as a shallow copy.
- Returns:
- taskDict
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict
- classmethod makeField(doc: str) ConfigurableField ¶
Make a
lsst.pex.config.ConfigurableField
for this task.- Parameters:
- doc
str
Help text for the field.
- doc
- Returns:
- configurableField
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
- configurableField
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- makeSubtask(name: str, **keyArgs: Any) None ¶
Create a subtask as a new instance as the
name
attribute of this task.- Parameters:
- name
str
Brief name of the subtask.
- **keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
config
.parentTask
.
- name
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.
- measureCrosstalkCoefficients(ratios, ordering, rejIter, rejSigma)¶
Measure crosstalk coefficients from the ratios.
Given a list of ratios for each target/source amp combination, we measure a sigma clipped mean and error.
The coefficient errors returned are the standard deviation of the final set of clipped input ratios.
- Parameters:
- ratios
dict
[dict
[numpy.ndarray
]] Catalog of arrays of ratios. The ratio arrays are one-dimensional
- ordering
list
[str
] or None List to use as a mapping between amplifier names (the elements of the list) and their position in the output calibration (the matching index of the list). If no ordering is supplied, the order of the keys in the ratio catalog is used.
- rejIter
int
Number of rejection iterations.
- rejSigma
float
Rejection threshold (sigma).
- ratios
- Returns:
- calib
lsst.ip.isr.CrosstalkCalib
The output crosstalk calibration.
- calib
- run(inputRatios, inputFluxes=None, camera=None, inputDims=None, outputDims=None)¶
Combine ratios to produce crosstalk coefficients.
- Parameters:
- inputRatios
list
[dict
[dict
[dict
[dict
[list
]]]]] A list of nested dictionaries of ratios indexed by target and source chip, then by target and source amplifier.
- inputFluxes
list
[dict
[dict
[list
]]] A list of nested dictionaries of source pixel fluxes, indexed by source chip and amplifier.
- camera
lsst.afw.cameraGeom.Camera
Input camera.
- inputDims
list
[lsst.daf.butler.DataCoordinate
] DataIds to use to construct provenance.
- outputDims
list
[lsst.daf.butler.DataCoordinate
] DataIds to use to populate the output calibration.
- inputRatios
- Returns:
- results
lsst.pipe.base.Struct
The results struct containing:
outputCrosstalk
Final crosstalk calibration (
lsst.ip.isr.CrosstalkCalib
).outputProvenance
Provenance data for the new calibration (
lsst.ip.isr.IsrProvenance
).
- results
- Raises:
- RuntimeError
Raised if the input data contains multiple target detectors.
- runQuantum(butlerQC, inputRefs, outputRefs)¶
Ensure that the input and output dimensions are passed along.
- Parameters:
- butlerQC
lsst.daf.butler.butlerQuantumContext.ButlerQuantumContext
Butler to operate on.
- inputRefs
lsst.pipe.base.connections.InputQuantizedConnection
Input data refs to load.
- ouptutRefs
lsst.pipe.base.connections.OutputQuantizedConnection
Output data refs to persist.
- butlerQC