ButlerLogRecords

class lsst.daf.butler.logging.ButlerLogRecords(root: RootModelRootType = PydanticUndefined)

Bases: _ButlerLogRecords

Class representing a collection of ButlerLogRecord.

Attributes Summary

log_format

model_computed_fields

Get the computed fields of this model instance.

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

Methods Summary

append(value)

clear()

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

extend(records)

from_file(filename)

Read records from file.

from_orm(obj)

from_raw(serialized)

Parse raw serialized form and return records.

from_records(records)

Create collection from iterable.

from_stream(stream)

Read records from I/O stream.

insert(index, value)

json(*[, include, exclude, by_alias, ...])

model_construct(root[, _fields_set])

Create a new model using the provided root object and update fields set.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(__context)

This function is meant to behave like a BaseModel method to initialise private attributes.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object contains string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

pop([index])

reverse()

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

set_log_format(format)

Set the log format string for these records.

update_forward_refs(**localns)

validate(value)

Attributes Documentation

log_format
model_computed_fields

Get the computed fields of this model instance.

Returns:

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'root': FieldInfo(annotation=list[ButlerLogRecord], required=True)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

Methods Documentation

append(value: LogRecord | ButlerLogRecord) None
clear() None
classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:
include: Optional set or mapping

specifying which fields to include in the copied model.

exclude: Optional set or mapping

specifying which fields to exclude in the copied model.

update: Optional dictionary of field-value pairs to override field values

in the copied model.

deep: If True, the values of fields that are Pydantic models will be deep copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any]
extend(records: Iterable[LogRecord | ButlerLogRecord]) None
classmethod from_file(filename: str) ButlerLogRecords

Read records from file.

Parameters:
filenamestr

Name of file containing the JSON records.

Notes

Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model.

classmethod from_orm(obj: Any) Model
classmethod from_raw(serialized: str | bytes) ButlerLogRecords

Parse raw serialized form and return records.

Parameters:
serializedbytes or str

Either the serialized JSON of the model created using .model_dump_json() or a streaming format of one JSON ButlerLogRecord per line. This can also support a zero-length string.

classmethod from_records(records: Iterable[ButlerLogRecord]) ButlerLogRecords

Create collection from iterable.

Parameters:
recordsiterable of ButlerLogRecord

The records to seed this class with.

classmethod from_stream(stream: IO) ButlerLogRecords

Read records from I/O stream.

Parameters:
streamtyping.IO

Stream from which to read JSON records.

Notes

Works with one-record-per-line format JSON files and a direct serialization of the Pydantic model.

insert(index: int, value: LogRecord | ButlerLogRecord) None
json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str
classmethod model_construct(root: RootModelRootType, _fields_set: set[str] | None = None) Model

Create a new model using the provided root object and update fields set.

Args:

root: The root object of the model. _fields_set: The set of fields to be updated.

Returns:

The new model.

Raises:

NotImplemented: If the model is not a subclass of RootModel.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model

Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]

Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value from the output. exclude_none: Whether to exclude fields that have a value of None from the output. round_trip: Whether to enable serialization and deserialization round-trip support. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str

Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. Can take either a string or set of strings. exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that have the default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: Whether to use serialization/deserialization between JSON and class instance. warnings: Whether to show any warnings that occurred during serialization.

Returns:

A JSON string representation of the model.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(__context: Any) None

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that’s what pydantic-core passes when calling it.

Args:

self: The BaseModel instance. __context: The context.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to raise an exception on invalid fields. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model

Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model

Validate the given object contains string data against the Pydantic model.

Args:

obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model
classmethod parse_obj(obj: Any) Model
classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model
pop(index: int = -1) ButlerLogRecord
reverse() None
classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any]
classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str
set_log_format(format: str | None) str | None

Set the log format string for these records.

Parameters:
formatstr, optional

The new format string to use for converting this collection of records into a string. If None the default format will be used.

Returns:
old_formatstr, optional

The previous log format.

classmethod update_forward_refs(**localns: Any) None
classmethod validate(value: Any) Model