DatasetProvenance¶
- class lsst.daf.butler.DatasetProvenance(*, inputs: list[lsst.daf.butler._dataset_ref.SerializedDatasetRef] = <factory>, quantum_id: ~uuid.UUID | None = None, extras: dict[uuid.UUID, dict[str, int | float | str | bool]] = <factory>)¶
Bases:
BaseModel
Provenance of a single
DatasetRef
.Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].Methods Summary
add_extra_provenance
(dataset_id, extra)Attach extra provenance to a specific dataset.
add_input
(ref)Add an input dataset to the provenance.
model_post_init
(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
Attributes Documentation
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].
Methods Documentation
- add_extra_provenance(dataset_id: UUID, extra: dict[str, int | float | str | bool]) None ¶
Attach extra provenance to a specific dataset.
- Parameters:
- dataset_id
uuid.UUID
The ID of the dataset to receive this provenance.
- extra
dict
[str
,typing.Any
] The extra provenance information as a dictionary. The values must be simple Python scalars.
- dataset_id
- add_input(ref: DatasetRef) None ¶
Add an input dataset to the provenance.
- Parameters:
- ref
DatasetRef
A dataset to register as an input.
- ref