SimulatedModel¶
- class lsst.ip.isr.SimulatedModel¶
Bases:
OverscanModelSimulated overscan model.
Methods Summary
difference(params, signal, data, error, ...)Calculate the flattened difference array between model and data.
loglikelihood(params, signal, data, error, ...)Calculate log likelihood of the model.
model_results(params, signal, num_transfers, amp)Generate a realization of the overscan model, using the specified fit parameters and input signal.
negative_loglikelihood(params, signal, data, ...)Calculate negative log likelihood of the model.
rms_error(params, signal, data, error, ...)Calculate RMS error between model and data.
Methods Documentation
- difference(params, signal, data, error, *args, **kwargs)¶
Calculate the flattened difference array between model and data.
- Parameters:
- params
lmfit.Parameters Object containing the model parameters.
- signal
np.ndarray, (nMeasurements) Array of image means.
- data
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error
float Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
- params
- Returns:
- difference
np.ndarray, (nMeasurements*nCols) The rms error between the model and input data.
- difference
- loglikelihood(params, signal, data, error, *args, **kwargs)¶
Calculate log likelihood of the model.
- Parameters:
- params
lmfit.Parameters Object containing the model parameters.
- signal
np.ndarray, (nMeasurements) Array of image means.
- data
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error
float Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
- params
- Returns:
- logL
float The log-likelihood of the observed data given the model parameters.
- logL
- static model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None)¶
Generate a realization of the overscan model, using the specified fit parameters and input signal.
- Parameters:
- params
lmfit.Parameters Object containing the model parameters.
- signal
np.ndarray, (nMeasurements) Array of image means.
- num_transfers
int Number of serial transfers that the charge undergoes.
- amp
lsst.afw.cameraGeom.Amplifier Amplifier to use for geometry information.
- start
int, optional First overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box.
- stop
int, optional Last overscan column to fit. This number includes the last imaging column, and needs to be adjusted by one when using the overscan bounding box.
- trap_type
str, optional Type of trap model to use.
- params
- Returns:
- results
np.ndarray, (nMeasurements, nCols) Model results.
- results
- negative_loglikelihood(params, signal, data, error, *args, **kwargs)¶
Calculate negative log likelihood of the model.
- Parameters:
- params
lmfit.Parameters Object containing the model parameters.
- signal
np.ndarray, (nMeasurements) Array of image means.
- data
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error
float Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
- params
- Returns:
- negativelogL
float The negative log-likelihood of the observed data given the model parameters.
- negativelogL
- rms_error(params, signal, data, error, *args, **kwargs)¶
Calculate RMS error between model and data.
- Parameters:
- params
lmfit.Parameters Object containing the model parameters.
- signal
np.ndarray, (nMeasurements) Array of image means.
- data
np.ndarray, (nMeasurements, nCols) Array of overscan column means from each measurement.
- error
float Fixed error value.
- *args
Additional position arguments.
- **kwargs
Additional keyword arguments.
- params
- Returns:
- rms
float The rms error between the model and input data.
- rms