LeastSquares#
- class lsst.afw.math.LeastSquares#
Bases:
pybind11_objectAttributes Summary
Methods Summary
fromDesignMatrix(design, data, factorization)fromNormalEquations(fisher, rhs, factorization)getCovariance(self)getDiagnostic(self, arg0)getDimension(self)getFactorization(self)getFisherMatrix(self)getRank(self)getSolution(self)getThreshold(self)setDesignMatrix(self, arg0, arg1)setNormalEquations(self, arg0, arg1)setThreshold(self, arg0)Attributes Documentation
- DIRECT_SVD = <Factorization.DIRECT_SVD: 2>#
- NORMAL_CHOLESKY = <Factorization.NORMAL_CHOLESKY: 1>#
- NORMAL_EIGENSYSTEM = <Factorization.NORMAL_EIGENSYSTEM: 0>#
Methods Documentation
- static fromDesignMatrix(design: numpy.ndarray, data: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) lsst.afw.math.LeastSquares#
- static fromNormalEquations(fisher: numpy.ndarray, rhs: numpy.ndarray, factorization: lsst.afw.math.LeastSquares.Factorization = <Factorization.???: 0>) lsst.afw.math.LeastSquares#
- getCovariance(self: lsst.afw.math.LeastSquares) numpy.ndarray#
- getDiagnostic(self: lsst.afw.math.LeastSquares, arg0: lsst.afw.math.LeastSquares.Factorization) numpy.ndarray#
- getDimension(self: lsst.afw.math.LeastSquares) int#
- getFactorization(self: lsst.afw.math.LeastSquares) lsst.afw.math.LeastSquares.Factorization#
- getFisherMatrix(self: lsst.afw.math.LeastSquares) numpy.ndarray#
- getRank(self: lsst.afw.math.LeastSquares) int#
- getSolution(self: lsst.afw.math.LeastSquares) numpy.ndarray#
- getThreshold(self: lsst.afw.math.LeastSquares) float#
- setDesignMatrix(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) None#
- setNormalEquations(self: lsst.afw.math.LeastSquares, arg0: numpy.ndarray, arg1: numpy.ndarray) None#
- setThreshold(self: lsst.afw.math.LeastSquares, arg0: SupportsFloat) None#