CachedBasicModelInitializer#
- class lsst.meas.extensions.multiprofit.fit_coadd_multiband.CachedBasicModelInitializer(*, inputs: dict[str, ~typing.Any] = <factory>, priors_shape_mag: dict = <factory>, priors: tuple[~lsst.gauss2d.fit._gauss2d_fit.Prior, ...], sources: tuple[~lsst.gauss2d.fit._gauss2d_fit.Source, ...])#
Bases:
BasicModelInitializerA basic initializer with a cached list of model sources and priors.
Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Return a cached reference to the result of _get_params_init.
Return a cached reference to the result of _get_priors_type.
Methods Summary
get_params_init(model)Return the free and/or centroid parameters for a model.
get_priors_type(model)Return the list of priors of known type, by type.
Attributes Documentation
- model_config: ClassVar[pydantic.ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'frozen': True}#
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- params_init#
Return a cached reference to the result of _get_params_init.
- priors_type#
Return a cached reference to the result of _get_priors_type.
Methods Documentation
- get_params_init(model: ModelD | ModelF) tuple[ParameterD]#
Return the free and/or centroid parameters for a model.
Parameters#
- model
The model to return parameters for.
Returns#
- parameters
The ordered list of parameters for the model.
- get_priors_type(model: ModelD | ModelF) tuple[tuple[GaussianPrior], tuple[ShapePrior]]#
Return the list of priors of known type, by type.
Parameters#
- model
The model to return priors for.
Returns#
- priors_gauss
A list of all of the Gaussian priors, in the order they occurred.
- priors_shape
A list of all of the shape priors, in the order they occurred.