ProvenanceDatasetModel#
- class lsst.pipe.base.quantum_graph.ProvenanceDatasetModel(*, dataset_id: ~uuid.UUID, dataset_type_name: str, data_coordinate: list[int | str] = <factory>, run: str, produced: bool, producer: ~uuid.UUID | None = None, consumers: list[~uuid.UUID] = <factory>)#
Bases:
PredictedDatasetModelData model for the datasets in a provenance quantum graph file.
Attributes Summary
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Alias for the dataset ID.
Methods Summary
copy(*args, **kwargs)See
pydantic.BaseModel.copy.from_predicted(predicted[, producer, consumers])Construct from a predicted dataset model.
model_construct(*args, **kwargs)See
pydantic.BaseModel.model_construct.model_copy(*args, **kwargs)See
pydantic.BaseModel.model_copy.model_dump(*args, **kwargs)See
pydantic.BaseModel.model_dump.model_dump_json(*args, **kwargs)See
pydantic.BaseModel.model_dump_json.model_json_schema(*args, **kwargs)See
pydantic.BaseModel.model_json_schema.model_validate(*args, **kwargs)See
pydantic.BaseModel.model_validate.model_validate_json(*args, **kwargs)See
pydantic.BaseModel.model_validate_json.model_validate_strings(*args, **kwargs)See
pydantic.BaseModel.model_validate_strings.Attributes Documentation
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- node_id#
Alias for the dataset ID.
Methods Documentation
- copy(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.copy.
- classmethod from_predicted(predicted: PredictedDatasetModel, producer: UUID | None = None, consumers: Iterable[UUID] = ()) ProvenanceDatasetModel#
Construct from a predicted dataset model.
Parameters#
- predicted
PredictedDatasetModel Information about the dataset from the predicted graph.
- producer
uuid.UUIDorNone, optional ID of the quantum that was predicted to produce this dataset.
- consumers
Iterable[uuid.UUID], optional IDs of the quanta that were predicted to consume this dataset.
Returns#
- provenance
ProvenanceDatasetModel Provenance dataset model.
Notes#
This initializes
producedtoTruewhenproducer is NoneandFalseotherwise, on the assumption that it will be updated later.- predicted
- classmethod model_construct(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_construct.
- model_copy(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_copy.
- model_dump(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_dump.
- model_dump_json(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_dump_json.
- classmethod model_json_schema(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_json_schema.
- classmethod model_validate(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_validate.
- classmethod model_validate_json(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_validate_json.
- classmethod model_validate_strings(*args: Any, **kwargs: Any) Any#
See
pydantic.BaseModel.model_validate_strings.