PsfMatchConfigDF¶
-
class
lsst.ip.diffim.PsfMatchConfigDF¶ Bases:
lsst.ip.diffim.PsfMatchConfig!The parameters specific to the delta-function (one basis per-pixel) Psf-matching basis
Attributes Summary
afwBackgroundConfigControlling the Afw background fitting ( SubtractBackgroundConfig, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)badMaskPlanesMask planes to ignore when calculating diffim statistics Options: NO_DATA EDGE SAT BAD CR INTRP ( List, default('NO_DATA', 'EDGE', 'SAT'))calculateKernelUncertaintyCalculate kernel and background uncertainties for each kernel candidate? This comes from the inverse of the covariance matrix. candidateCoreRadiusRadius for calculation of stats in ‘core’ of KernelCandidate diffim. candidateResidualMeanMaxRejects KernelCandidates yielding bad difference image quality. candidateResidualStdMaxRejects KernelCandidates yielding bad difference image quality. centralRegularizationStencilType of stencil to approximate central derivative (for centralDifference only) ( int, default9)checkConditionNumberTest for maximum condition number when inverting a kernel matrix. conditionNumberTypeUse singular values (SVD) or eigen values (EIGENVALUE) to determine condition number ( str, default'EIGENVALUE')constantVarianceWeightingUse constant variance weighting in single kernel fitting? In some cases this is better for bright star residuals. detectionConfigControlling the detection of sources for kernel building ( DetectionConfig, default<class 'lsst.ip.diffim.psfMatch.DetectionConfig'>)fitForBackgroundInclude terms (including kernel cross terms) for background in ip_diffim ( bool, defaultFalse)forwardRegularizationOrdersArray showing which order derivatives to penalize (for forwardDifference only) ( List, default(1, 2))iterateSingleKernelRemake KernelCandidate using better variance estimate after first pass? Primarily useful when convolving a single-depth image, otherwise not necessary. kernelBasisSetType of basis set for PSF matching kernel. kernelSizeNumber of rows/columns in the convolution kernel; should be odd-valued. kernelSizeFwhmScalingHow much to scale the kernel size based on the largest AL Sigma ( float, default6.0)kernelSizeMaxMaximum Kernel Size ( int, default35)kernelSizeMinMinimum Kernel Size ( int, default21)kernelSumClippingDo sigma clipping on the ensemble of kernel sums ( bool, defaultTrue)lambdaMaxIf scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), stop at this value. lambdaMinIf scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), start at this value. lambdaScalingFraction of the default lambda strength (N.R. lambdaStepIf scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), step in these increments. lambdaStepTypeIf a scan through lambda is needed (minimizeBiasedRisk, minimizeUnbiasedRisk), lambdaTypeHow to choose the value of the regularization strength ( str, default'absolute')lambdaValueValue used for absolute determinations of regularization strength ( float, default0.2)maxConditionNumberMaximum condition number for a well conditioned matrix ( float, default50000000.0)maxKsumSigmaMaximum allowed sigma for outliers from kernel sum distribution. maxSpatialConditionNumberMaximum condition number for a well conditioned spatial matrix ( float, default10000000000.0)maxSpatialIterationsMaximum number of iterations for rejecting bad KernelCandidates in spatial fitting ( int, default3)nStarPerCellNumber of KernelCandidates in each SpatialCell to use in the spatial fitting ( int, default3)numPrincipalComponentsNumber of principal components to use for Pca basis, including the mean kernel if requested. regularizationBorderPenaltyValue of the penalty for kernel border pixels ( float, default3.0)regularizationTypeType of regularization. scaleByFwhmScale kernelSize, alardGaussians by input Fwhm ( bool, defaultTrue)singleKernelClippingDo sigma clipping on each raw kernel candidate ( bool, defaultTrue)sizeCellXSize (rows) in pixels of each SpatialCell for spatial modeling ( int, default128)sizeCellYSize (columns) in pixels of each SpatialCell for spatial modeling ( int, default128)spatialBgOrderSpatial order of differential background variation ( int, default1)spatialKernelClippingDo sigma clipping after building the spatial model ( bool, defaultTrue)spatialKernelOrderSpatial order of convolution kernel variation ( int, default2)spatialModelTypeType of spatial functions for kernel and background ( str, default'chebyshev1')subtractMeanForPcaSubtract off the mean feature before doing the Pca ( bool, defaultTrue)useAfwBackgroundUse afw background subtraction instead of ip_diffim ( bool, defaultFalse)useBicForKernelBasisUse Bayesian Information Criterion to select the number of bases going into the kernel ( bool, defaultFalse)useCoreStatsUse the core of the footprint for the quality statistics, instead of the entire footprint. usePcaForSpatialKernelUse Pca to reduce the dimensionality of the kernel basis sets. useRegularizationUse regularization to smooth the delta function kernels ( bool, defaultTrue)warpingConfigConfig for warping exposures to a common alignment ( WarperConfig, default<class 'lsst.afw.math.warper.WarperConfig'>)Methods Summary
setDefaults()Derived config classes that must compute defaults rather than using the Field defaults should do so here. Attributes Documentation
-
afwBackgroundConfig¶ Controlling the Afw background fitting (
SubtractBackgroundConfig, default<class 'lsst.meas.algorithms.subtractBackground.SubtractBackgroundConfig'>)
-
badMaskPlanes¶ Mask planes to ignore when calculating diffim statistics Options: NO_DATA EDGE SAT BAD CR INTRP (
List, default('NO_DATA', 'EDGE', 'SAT'))
-
calculateKernelUncertainty¶ Calculate kernel and background uncertainties for each kernel candidate? This comes from the inverse of the covariance matrix. Warning: regularization can cause problems for this step. (
bool, defaultFalse)
-
candidateCoreRadius¶ Radius for calculation of stats in ‘core’ of KernelCandidate diffim. Total number of pixels used will be (2*radius)**2. This is used both for ‘core’ diffim quality as well as ranking of KernelCandidates by their total flux in this core (
int, default3)
-
candidateResidualMeanMax¶ Rejects KernelCandidates yielding bad difference image quality. Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor. Represents average over pixels of (image/sqrt(variance)). (
float, default0.25)
-
candidateResidualStdMax¶ Rejects KernelCandidates yielding bad difference image quality. Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor. Represents stddev over pixels of (image/sqrt(variance)). (
float, default1.5)
-
centralRegularizationStencil¶ Type of stencil to approximate central derivative (for centralDifference only) (
int, default9)Allowed values:
'5'- 5-point stencil including only adjacent-in-x,y elements
'9'- 9-point stencil including diagonal elements
'None'- Field is optional
-
checkConditionNumber¶ Test for maximum condition number when inverting a kernel matrix. Anything above maxConditionNumber is not used and the candidate is set as BAD. Also used to truncate inverse matrix in estimateBiasedRisk. However, if you are doing any deconvolution you will want to turn this off, or use a large maxConditionNumber (
bool, defaultFalse)
-
conditionNumberType¶ Use singular values (SVD) or eigen values (EIGENVALUE) to determine condition number (
str, default'EIGENVALUE')Allowed values:
'SVD'- Use singular values
'EIGENVALUE'- Use eigen values (faster)
'None'- Field is optional
-
constantVarianceWeighting¶ Use constant variance weighting in single kernel fitting? In some cases this is better for bright star residuals. (
bool, defaultTrue)
-
detectionConfig¶ Controlling the detection of sources for kernel building (
DetectionConfig, default<class 'lsst.ip.diffim.psfMatch.DetectionConfig'>)
-
fitForBackground¶ Include terms (including kernel cross terms) for background in ip_diffim (
bool, defaultFalse)
-
forwardRegularizationOrders¶ Array showing which order derivatives to penalize (for forwardDifference only) (
List, default(1, 2))
-
iterateSingleKernel¶ Remake KernelCandidate using better variance estimate after first pass? Primarily useful when convolving a single-depth image, otherwise not necessary. (
bool, defaultFalse)
-
kernelBasisSet¶ Type of basis set for PSF matching kernel. (
str, default'alard-lupton')Allowed values:
'alard-lupton'- Alard-Lupton sum-of-gaussians basis set,
- The first term has no spatial variation
- The kernel sum is conserved
- You may want to turn off ‘usePcaForSpatialKernel’
'delta-function'- Delta-function kernel basis set,
- You may enable the option useRegularization
- You should seriously consider usePcaForSpatialKernel, which will also enable kernel sum conservation for the delta function kernels
'None'- Field is optional
-
kernelSize¶ Number of rows/columns in the convolution kernel; should be odd-valued. Modified by kernelSizeFwhmScaling if scaleByFwhm = true (
int, default21)
-
kernelSizeFwhmScaling¶ How much to scale the kernel size based on the largest AL Sigma (
float, default6.0)
-
lambdaMax¶ If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), stop at this value. If lambdaStepType = log:linear, suggest 2:100 (
float, default2.0)
-
lambdaMin¶ If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), start at this value. If lambdaStepType = log:linear, suggest -1:0.1 (
float, default-1.0)
-
lambdaScaling¶ Fraction of the default lambda strength (N.R. 18.5.8) to use. 1e-4 or 1e-5 (
float, default0.0001)
-
lambdaStep¶ If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk), step in these increments. If lambdaStepType = log:linear, suggest 0.1:0.1 (
float, default0.1)
-
lambdaStepType¶ - If a scan through lambda is needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
- use log or linear steps (
str, default'log')
Allowed values:
'log'- Step in log intervals; e.g. lambdaMin, lambdaMax, lambdaStep = -1.0, 2.0, 0.1
'linear'- Step in linear intervals; e.g. lambdaMin, lambdaMax, lambdaStep = 0.1, 100, 0.1
'None'- Field is optional
-
lambdaType¶ How to choose the value of the regularization strength (
str, default'absolute')Allowed values:
'absolute'- Use lambdaValue as the value of regularization strength
'relative'- Use lambdaValue as fraction of the default regularization strength (N.R. 18.5.8)
'minimizeBiasedRisk'- Minimize biased risk estimate
'minimizeUnbiasedRisk'- Minimize unbiased risk estimate
'None'- Field is optional
-
maxConditionNumber¶ Maximum condition number for a well conditioned matrix (
float, default50000000.0)
-
maxKsumSigma¶ Maximum allowed sigma for outliers from kernel sum distribution. Used to reject variable objects from the kernel model (
float, default3.0)
-
maxSpatialConditionNumber¶ Maximum condition number for a well conditioned spatial matrix (
float, default10000000000.0)
-
maxSpatialIterations¶ Maximum number of iterations for rejecting bad KernelCandidates in spatial fitting (
int, default3)
-
nStarPerCell¶ Number of KernelCandidates in each SpatialCell to use in the spatial fitting (
int, default3)
-
numPrincipalComponents¶ Number of principal components to use for Pca basis, including the mean kernel if requested. (
int, default5)
-
regularizationType¶ Type of regularization. (
str, default'centralDifference')Allowed values:
'centralDifference'- Penalize second derivative using 2-D stencil of central finite difference
'forwardDifference'- Penalize first, second, third derivatives using forward finite differeces
'None'- Field is optional
-
spatialModelType¶ Type of spatial functions for kernel and background (
str, default'chebyshev1')Allowed values:
'chebyshev1'- Chebyshev polynomial of the first kind
'polynomial'- Standard x,y polynomial
'None'- Field is optional
-
useBicForKernelBasis¶ Use Bayesian Information Criterion to select the number of bases going into the kernel (
bool, defaultFalse)
-
useCoreStats¶ Use the core of the footprint for the quality statistics, instead of the entire footprint. WARNING: if there is deconvolution we probably will need to turn this off (
bool, defaultFalse)
-
usePcaForSpatialKernel¶ Use Pca to reduce the dimensionality of the kernel basis sets. This is particularly useful for delta-function kernels. Functionally, after all Cells have their raw kernels determined, we run a Pca on these Kernels, re-fit the Cells using the eigenKernels and then fit those for spatial variation using the same technique as for Alard-Lupton kernels. If this option is used, the first term will have no spatial variation and the kernel sum will be conserved. (
bool, defaultFalse)
-
warpingConfig¶ Config for warping exposures to a common alignment (
WarperConfig, default<class 'lsst.afw.math.warper.WarperConfig'>)
Methods Documentation
-
setDefaults()¶ Derived config classes that must compute defaults rather than using the Field defaults should do so here. To correctly use inherited defaults, implementations of setDefaults() must call their base class’ setDefaults()
-