DecorrelateALKernelSpatialTask¶
-
class
lsst.ip.diffim.DecorrelateALKernelSpatialTask(*args, **kwargs)¶ Bases:
lsst.pipe.base.Task! @anchor DecorrelateALKernelSpatialTask
@brief Decorrelate the effect of convolution by Alard-Lupton matching kernel in image difference
@section ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Contents Contents
- @ref ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Purpose
- @ref ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Config
- @ref ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Run
- @ref ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Debug
- @ref ip_diffim_imDecorr_DecorrALKerSpatTask_Example
@section ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Purpose Description
Pipe-task that removes the neighboring-pixel covariance in an image difference that are added when the template image is convolved with the Alard-Lupton PSF matching kernel.
This task is a simple wrapper around @ref DecorrelateALKernelTask, which takes a
spatiallyVaryingparameter in itsrunmethod. If it isFalse, then it simply calls therunmethod of @ref DecorrelateALKernelTask. If it is True, then it uses the @ref ImageMapReduceTask framework to break the exposures into subExposures on a grid, and performs therunmethod of @ref DecorrelateALKernelTask on each subExposure. This enables it to account for spatially-varying PSFs and noise in the exposures when performing the decorrelation.@section ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Initialize Task initialization
@copydoc __init__
@section ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Run Invoking the Task
@copydoc run
@section ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Config Configuration parameters
See @ref DecorrelateALKernelSpatialConfig
@section ip_diffim_imageDecorrelation_DecorrelateALKernelSpatialTask_Debug Debug variables
This task has no debug variables
@section ip_diffim_imDecorr_DecorrALKerSpatTask_Example Example of using DecorrelateALKernelSpatialTask
This task has no standalone example, however it is applied as a subtask of pipe.tasks.imageDifference.ImageDifferenceTask. There is also an example of its use in
tests/testImageDecorrelation.py.Methods Summary
computeVarianceMean(exposure)Compute the mean of the variance plane of exposure.run(scienceExposure, templateExposure, …)! Perform decorrelation of an image difference exposure. Methods Documentation
-
computeVarianceMean(exposure)¶ Compute the mean of the variance plane of
exposure.
-
run(scienceExposure, templateExposure, subtractedExposure, psfMatchingKernel, spatiallyVarying=True, preConvKernel=None)¶ ! Perform decorrelation of an image difference exposure.
Decorrelates the diffim due to the convolution of the templateExposure with the A&L psfMatchingKernel. If
spatiallyVaryingis True, it utilizes the spatially varying matching kernel via theimageMapReduceframework to perform spatially-varying decorrelation on a grid of subExposures.Parameters: - scienceExposure : lsst.afw.image.Exposure
the science Exposure used for PSF matching
- templateExposure : lsst.afw.image.Exposure
the template Exposure used for PSF matching
- subtractedExposure : lsst.afw.image.Exposure
the subtracted Exposure produced by
ip_diffim.ImagePsfMatchTask.subtractExposures()- psfMatchingKernel :
an (optionally spatially-varying) PSF matching kernel produced by
ip_diffim.ImagePsfMatchTask.subtractExposures()- spatiallyVarying : bool
if True, perform the spatially-varying operation
- preConvKernel : lsst.meas.algorithms.Psf
if not none, the scienceExposure has been pre-filtered with this kernel. (Currently this option is experimental.)
Returns: - a `pipeBase.Struct` containing:
correctedExposure: the decorrelated diffim