MatchBackgroundsTask¶
Python API summary¶
from lsst.pipe.tasks.matchBackgrounds import MatchBackgroundsTask
- 
classMatchBackgroundsTask
- Base class for data processing tasks - ...
- 
attributeconfig
- Access configuration fields and retargetable subtasks. 
- 
methodrun
- Match the backgrounds of a list of coadd temp exposures to a reference coadd temp exposure - ...
See also
See the MatchBackgroundsTask API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
approxWeighting¶
- Default
- True
- Field type
- bool- Field
Use inverse-variance weighting when approximating background offset model? This will fail when the background offset is constant (this is usually only the case in testing with artificial images).(usePolynomial=True)
badMaskPlanes¶
- Default
- ['NO_DATA', 'DETECTED', 'DETECTED_NEGATIVE', 'SAT', 'BAD', 'INTRP', 'CR']
- Field type
- str- ListField
Names of mask planes to ignore while estimating the background
bestRefWeightCoverage¶
- Default
- 0.4
- Field type
- float- RangeField
- Range
- [0.0,1.0)
Weight given to coverage (number of pixels that overlap with patch), when calculating best reference exposure. Higher weight prefers exposures with high coverage.Ignored when reference visit is supplied
bestRefWeightLevel¶
- Default
- 0.2
- Field type
- float- RangeField
- Range
- [0.0,1.0)
Weight given to mean background level when calculating best reference exposure. Higher weight prefers exposures with low mean background level. Ignored when reference visit is supplied.
bestRefWeightVariance¶
- Default
- 0.4
- Field type
- float- RangeField
- Range
- [0.0,1.0)
Weight given to image variance when calculating best reference exposure. Higher weight prefers exposures with low image variance. Ignored when reference visit is supplied
binSize¶
- Default
- 256
- Field type
- int- Field
Bin size for gridding the difference image and fitting a spatial model
gridStatistic¶
- Default
- 'MEAN'
- Field type
- str- ChoiceField(optional)
- Choices
- 'MEAN'
- mean
- 'MEDIAN'
- median
- 'MEANCLIP'
- clipped mean
- None
- Field is optional
 
Type of statistic to estimate pixel value for the grid points
gridStdevEpsilon¶
- Default
- 1e-08
- Field type
- float- RangeField
- Range
- [0.0,inf)
Tolerance on almost zero standard deviation in a background-offset grid bin. If all bins have a standard deviation below this value, the background offset model is approximated without inverse-variance weighting. (usePolynomial=True)
interpStyle¶
- Default
- 'AKIMA_SPLINE'
- Field type
- str- ChoiceField(optional)
- Choices
- 'CONSTANT'
- Use a single constant value
- 'LINEAR'
- Use linear interpolation
- 'NATURAL_SPLINE'
- cubic spline with zero second derivative at endpoints
- 'AKIMA_SPLINE'
- higher-level nonlinear spline that is more robust to outliers
- 'NONE'
- No background estimation is to be attempted
- None
- Field is optional
 
Algorithm to interpolate the background values; ignored if usePolynomial is TrueMaps to an enum; see afw.math.Background
numIter¶
- Default
- 2
- Field type
- int- Field
Number of iterations of outlier rejection; ignored if gridStatistic != ‘MEANCLIP’.
numSigmaClip¶
- Default
- 3
- Field type
- int- Field
Sigma for outlier rejection; ignored if gridStatistic != ‘MEANCLIP’.
order¶
- Default
- 8
- Field type
- int- Field
Order of Chebyshev polynomial background model. Ignored if usePolynomial False
undersampleStyle¶
- Default
- 'REDUCE_INTERP_ORDER'
- Field type
- str- ChoiceField(optional)
- Choices
- 'THROW_EXCEPTION'
- throw an exception if there are too few points
- 'REDUCE_INTERP_ORDER'
- use an interpolation style with a lower order.
- 'INCREASE_NXNYSAMPLE'
- Increase the number of samples used to make the interpolation grid.
- None
- Field is optional
 
Behaviour if there are too few points in grid for requested interpolation style. Note: INCREASE_NXNYSAMPLE only allowed for usePolynomial=True.