MatchBackgroundsTask¶
Python API summary¶
from lsst.pipe.tasks.matchBackgrounds import MatchBackgroundsTask
-
class
(*args, **kwargs)MatchBackgroundsTask Base class for data processing tasks
...
-
attribute
config Access configuration fields and retargetable subtasks.
-
method
(expRefList, expDatasetType, imageScalerList=None, refExpDataRef=None, refImageScaler=None)run Match the backgrounds of a list of coadd temp exposures to a reference coadd temp exposure
...
See also
See the MatchBackgroundsTask API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
approxWeighting¶
- Default
True- Field type
boolField
Use inverse-variance weighting when approximating background offset model? This will fail when the background offset is constant (this is usually only the case in testing with artificial images).(usePolynomial=True)
badMaskPlanes¶
- Default
['NO_DATA', 'DETECTED', 'DETECTED_NEGATIVE', 'SAT', 'BAD', 'INTRP', 'CR']- Field type
strListField
Names of mask planes to ignore while estimating the background
bestRefWeightCoverage¶
- Default
0.4- Field type
floatRangeField- Range
- [0.0,1.0)
Weight given to coverage (number of pixels that overlap with patch), when calculating best reference exposure. Higher weight prefers exposures with high coverage.Ignored when reference visit is supplied
bestRefWeightLevel¶
- Default
0.2- Field type
floatRangeField- Range
- [0.0,1.0)
Weight given to mean background level when calculating best reference exposure. Higher weight prefers exposures with low mean background level. Ignored when reference visit is supplied.
bestRefWeightVariance¶
- Default
0.4- Field type
floatRangeField- Range
- [0.0,1.0)
Weight given to image variance when calculating best reference exposure. Higher weight prefers exposures with low image variance. Ignored when reference visit is supplied
binSize¶
- Default
256- Field type
intField
Bin size for gridding the difference image and fitting a spatial model
gridStatistic¶
- Default
'MEAN'- Field type
strChoiceField(optional)- Choices
'MEAN'- mean
'MEDIAN'- median
'MEANCLIP'- clipped mean
None- Field is optional
Type of statistic to estimate pixel value for the grid points
gridStdevEpsilon¶
- Default
1e-08- Field type
floatRangeField- Range
- [0.0,inf)
Tolerance on almost zero standard deviation in a background-offset grid bin. If all bins have a standard deviation below this value, the background offset model is approximated without inverse-variance weighting. (usePolynomial=True)
interpStyle¶
- Default
'AKIMA_SPLINE'- Field type
strChoiceField(optional)- Choices
'CONSTANT'- Use a single constant value
'LINEAR'- Use linear interpolation
'NATURAL_SPLINE'- cubic spline with zero second derivative at endpoints
'AKIMA_SPLINE'- higher-level nonlinear spline that is more robust to outliers
'NONE'- No background estimation is to be attempted
None- Field is optional
Algorithm to interpolate the background values; ignored if usePolynomial is TrueMaps to an enum; see afw.math.Background
numIter¶
- Default
2- Field type
intField
Number of iterations of outlier rejection; ignored if gridStatistic != ‘MEANCLIP’.
numSigmaClip¶
- Default
3- Field type
intField
Sigma for outlier rejection; ignored if gridStatistic != ‘MEANCLIP’.
order¶
- Default
8- Field type
intField
Order of Chebyshev polynomial background model. Ignored if usePolynomial False
undersampleStyle¶
- Default
'REDUCE_INTERP_ORDER'- Field type
strChoiceField(optional)- Choices
'THROW_EXCEPTION'- throw an exception if there are too few points
'REDUCE_INTERP_ORDER'- use an interpolation style with a lower order.
'INCREASE_NXNYSAMPLE'- Increase the number of samples used to make the interpolation grid.
None- Field is optional
Behaviour if there are too few points in grid for requested interpolation style. Note: INCREASE_NXNYSAMPLE only allowed for usePolynomial=True.