AssembleCoaddTask¶
-
class
lsst.pipe.tasks.assembleCoadd.
AssembleCoaddTask
(*args, **kwargs)¶ Bases:
lsst.pipe.tasks.coaddBase.CoaddBaseTask
,lsst.pipe.base.PipelineTask
Assemble a coadded image from a set of warps (coadded temporary exposures).
We want to assemble a coadded image from a set of Warps (also called coadded temporary exposures or
coaddTempExps
). Each input Warp covers a patch on the sky and corresponds to a single run/visit/exposure of the covered patch. We provide the task with a list of Warps (selectDataList
) from which it selects Warps that cover the specified patch (pointed at bydataRef
). Each Warp that goes into a coadd will typically have an independent photometric zero-point. Therefore, we must scale each Warp to set it to a common photometric zeropoint. WarpType may be one of ‘direct’ or ‘psfMatched’, and the boolean configsconfig.makeDirect
andconfig.makePsfMatched
set which of the warp types will be coadded. The coadd is computed as a mean with optional outlier rejection. Criteria for outlier rejection are set inAssembleCoaddConfig
. Finally, Warps can have bad ‘NaN’ pixels which received no input from the source calExps. We interpolate over these bad (NaN) pixels.AssembleCoaddTask
uses several sub-tasks. These areScaleZeroPointTask
- create and use an
imageScaler
object to scale the photometric zeropoint for each Warp InterpImageTask
- interpolate across bad pixels (NaN) in the final coadd
You can retarget these subtasks if you wish.
Notes
The
lsst.pipe.base.CmdLineTask
interface supports a flag-d
to importdebug.py
from yourPYTHONPATH
; seebaseDebug
for more aboutdebug.py
files.AssembleCoaddTask
has no debug variables of its own. Some of the subtasks may support debug variables. See the documentation for the subtasks for further information.Examples
AssembleCoaddTask
assembles a set of warped images into a coadded image. TheAssembleCoaddTask
can be invoked by runningassembleCoadd.py
with the flag ‘–legacyCoadd’. Usage of assembleCoadd.py expects two inputs: a data reference to the tract patch and filter to be coadded, and a list of Warps to attempt to coadd. These are specified using--id
and--selectId
, respectively:--id = [KEY=VALUE1[^VALUE2[^VALUE3...] [KEY=VALUE1[^VALUE2[^VALUE3...] ...]] --selectId [KEY=VALUE1[^VALUE2[^VALUE3...] [KEY=VALUE1[^VALUE2[^VALUE3...] ...]]
Only the Warps that cover the specified tract and patch will be coadded. A list of the available optional arguments can be obtained by calling
assembleCoadd.py
with the--help
command line argument:assembleCoadd.py --help
To demonstrate usage of the
AssembleCoaddTask
in the larger context of multi-band processing, we will generate the HSC-I & -R band coadds from HSC engineering test data provided in theci_hsc
package. To begin, assuming that the lsst stack has been already set up, we must set up the obs_subaru andci_hsc
packages. This defines the environment variable$CI_HSC_DIR
and points at the location of the package. The raw HSC data live in the$CI_HSC_DIR/raw directory
. To begin assembling the coadds, we must first- processCcd
- process the individual ccds in $CI_HSC_RAW to produce calibrated exposures
- makeSkyMap
- create a skymap that covers the area of the sky present in the raw exposures
- makeCoaddTempExp
- warp the individual calibrated exposures to the tangent plane of the coadd
We can perform all of these steps by running
$CI_HSC_DIR scons warp-903986 warp-904014 warp-903990 warp-904010 warp-903988
This will produce warped exposures for each visit. To coadd the warped data, we call assembleCoadd.py as follows:
assembleCoadd.py --legacyCoadd $CI_HSC_DIR/DATA --id patch=5,4 tract=0 filter=HSC-I --selectId visit=903986 ccd=16 --selectId visit=903986 ccd=22 --selectId visit=903986 ccd=23 --selectId visit=903986 ccd=100 --selectId visit=904014 ccd=1 --selectId visit=904014 ccd=6 --selectId visit=904014 ccd=12 --selectId visit=903990 ccd=18 --selectId visit=903990 ccd=25 --selectId visit=904010 ccd=4 --selectId visit=904010 ccd=10 --selectId visit=904010 ccd=100 --selectId visit=903988 ccd=16 --selectId visit=903988 ccd=17 --selectId visit=903988 ccd=23 --selectId visit=903988 ccd=24
that will process the HSC-I band data. The results are written in
$CI_HSC_DIR/DATA/deepCoadd-results/HSC-I
.You may also choose to run:
scons warp-903334 warp-903336 warp-903338 warp-903342 warp-903344 warp-903346 assembleCoadd.py --legacyCoadd $CI_HSC_DIR/DATA --id patch=5,4 tract=0 filter=HSC-R --selectId visit=903334 ccd=16 --selectId visit=903334 ccd=22 --selectId visit=903334 ccd=23 --selectId visit=903334 ccd=100 --selectId visit=903336 ccd=17 --selectId visit=903336 ccd=24 --selectId visit=903338 ccd=18 --selectId visit=903338 ccd=25 --selectId visit=903342 ccd=4 --selectId visit=903342 ccd=10 --selectId visit=903342 ccd=100 --selectId visit=903344 ccd=0 --selectId visit=903344 ccd=5 --selectId visit=903344 ccd=11 --selectId visit=903346 ccd=1 --selectId visit=903346 ccd=6 --selectId visit=903346 ccd=12
to generate the coadd for the HSC-R band if you are interested in following multiBand Coadd processing as discussed in
pipeTasks_multiBand
(but note that normally, one would use theSafeClipAssembleCoaddTask
rather thanAssembleCoaddTask
to make the coadd.Attributes Summary
canMultiprocess
Methods Summary
adaptArgsAndRun
(inputData, inputDataIds, …)Assemble a coadd from a set of Warps. applyAltMaskPlanes
(mask, altMaskSpans)Apply in place alt mask formatted as SpanSets to a mask. applyOverrides
(config)A hook to allow a task to change the values of its config after the camera-specific overrides are loaded but before any command-line overrides are applied. assembleMetadata
(coaddExposure, …)Set the metadata for the coadd. assembleSubregion
(coaddExposure, bbox, …)Assemble the coadd for a sub-region. emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. getAllSchemaCatalogs
()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getBadPixelMask
()! getCoaddDatasetName
([warpType])Return coadd name for given warpType and task config getDatasetTypes
(config, configClass)Return dataset type descriptors defined in task configuration. getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getInitInputDatasetTypes
(config)Return dataset type descriptors that can be used to retrieve the initInputs
constructor argument.getInitOutputDatasetTypes
(config)Return dataset type descriptors that can be used to write the objects returned by getOutputDatasets
.getInitOutputDatasets
()Return persistable outputs that are available immediately after the task has been constructed. getInputDatasetTypes
(config)Return input dataset type descriptors getName
()Get the name of the task. getOutputDatasetTypes
(config)Return output dataset type descriptors getPerDatasetTypeDimensions
(config)Return any Dimensions that are permitted to have different values for different DatasetTypes within the same quantum. getPrerequisiteDatasetTypes
(config)Return the local names of input dataset types that should be assumed to exist instead of constraining what data to process with this task. getResourceConfig
()Return resource configuration for this task. getSchemaCatalogs
()Get the schemas generated by this task. getSkyInfo
(patchRef)! getTaskDict
()Get a dictionary of all tasks as a shallow copy. getTempExpDatasetName
([warpType])Return warp name for given warpType and task config getTempExpRefList
(patchRef, calExpRefList)Generate list data references corresponding to warped exposures that lie within the patch to be coadded. makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.makeSupplementaryData
(dataRef[, …])Make additional inputs to run() specific to subclasses (Gen2) makeSupplementaryDataGen3
(inputData, …)Make additional inputs to run() specific to subclasses (Gen3) parseAndRun
([args, config, log, doReturnResults])Parse an argument list and run the command. prepareInputs
(refList)Prepare the input warps for coaddition by measuring the weight for each warp and the scaling for the photometric zero point. prepareStats
([mask])Prepare the statistics for coadding images. processResults
(coaddExposure, dataRef)Interpolate over missing data and mask bright stars. readBrightObjectMasks
(dataRef)Retrieve the bright object masks. removeMaskPlanes
(maskedImage)Unset the mask of an image for mask planes specified in the config. run
(skyInfo, tempExpRefList, …[, …])Assemble a coadd from input warps runDataRef
(dataRef[, selectDataList, …])Assemble a coadd from a set of Warps. runQuantum
(quantum, butler)Execute PipelineTask algorithm on single quantum of data. saveStruct
(struct, outputDataRefs, butler)Save data in butler. selectExposures
(patchRef[, skyInfo, …])! setBrightObjectMasks
(exposure, dataId, …)Set the bright object masks. setInexactPsf
(mask)Set INEXACT_PSF mask plane. setRejectedMaskMapping
(statsCtrl)Map certain mask planes of the warps to new planes for the coadd. shrinkValidPolygons
(coaddInputs)Shrink coaddInputs’ ccds’ ValidPolygons in place. timer
(name[, logLevel])Context manager to log performance data for an arbitrary block of code. writeConfig
(butler[, clobber, doBackup])Write the configuration used for processing the data, or check that an existing one is equal to the new one if present. writeMetadata
(dataRef)Write the metadata produced from processing the data. writePackageVersions
(butler[, clobber, …])Compare and write package versions. writeSchemas
(butler[, clobber, doBackup])Write the schemas returned by lsst.pipe.base.Task.getAllSchemaCatalogs
.Attributes Documentation
-
canMultiprocess
= True¶
Methods Documentation
-
adaptArgsAndRun
(inputData, inputDataIds, outputDataIds, butler)¶ Assemble a coadd from a set of Warps.
PipelineTask (Gen3) entry point to Coadd a set of Warps. Analogous to
runDataRef
, it prepares all the data products to be passed torun
, and processes the results before returning to struct of results to be written out. AssembleCoadd cannot fit all Warps in memory. Therefore, its inputs are accessed subregion by subregion by thelsst.daf.butler.ShimButler
that quacks like a Gen2lsst.daf.persistence.Butler
. Updates to this method should correspond to an update inrunDataRef
while both entry points are used.Parameters: - inputData :
dict
Keys are the names of the configs describing input dataset types. Values are input Python-domain data objects (or lists of objects) retrieved from data butler.
- inputDataIds :
dict
Keys are the names of the configs describing input dataset types. Values are DataIds (or lists of DataIds) that task consumes for corresponding dataset type.
- outputDataIds :
dict
Keys are the names of the configs describing input dataset types. Values are DataIds (or lists of DataIds) that task is to produce for corresponding dataset type.
- butler :
lsst.daf.butler.Butler
Gen3 Butler object for fetching additional data products before running the Task
Returns: - result :
lsst.pipe.base.Struct
Result struct with components:
coaddExposure
: coadded exposure (lsst.afw.image.Exposure
)nImage
: N Image (lsst.afw.image.Image
)
- inputData :
-
applyAltMaskPlanes
(mask, altMaskSpans)¶ Apply in place alt mask formatted as SpanSets to a mask.
Parameters: - mask :
lsst.afw.image.Mask
Original mask.
- altMaskSpans :
dict
SpanSet lists to apply. Each element contains the new mask plane name (e.g. “CLIPPED and/or “NO_DATA”) as the key, and list of SpanSets to apply to the mask.
Returns: - mask :
lsst.afw.image.Mask
Updated mask.
- mask :
-
classmethod
applyOverrides
(config)¶ A hook to allow a task to change the values of its config after the camera-specific overrides are loaded but before any command-line overrides are applied.
Parameters: - config : instance of task’s
ConfigClass
Task configuration.
Notes
This is necessary in some cases because the camera-specific overrides may retarget subtasks, wiping out changes made in ConfigClass.setDefaults. See LSST Trac ticket #2282 for more discussion.
Warning
This is called by CmdLineTask.parseAndRun; other ways of constructing a config will not apply these overrides.
- config : instance of task’s
-
assembleMetadata
(coaddExposure, tempExpRefList, weightList)¶ Set the metadata for the coadd.
This basic implementation sets the filter from the first input.
Parameters:
-
assembleSubregion
(coaddExposure, bbox, tempExpRefList, imageScalerList, weightList, altMaskList, statsFlags, statsCtrl, nImage=None)¶ Assemble the coadd for a sub-region.
For each coaddTempExp, check for (and swap in) an alternative mask if one is passed. Remove mask planes listed in
config.removeMaskPlanes
. Finally, stack the actual exposures usinglsst.afw.math.statisticsStack
with the statistic specified by statsFlags. Typically, the statsFlag will be one of lsst.afw.math.MEAN for a mean-stack orlsst.afw.math.MEANCLIP
for outlier rejection using an N-sigma clipped mean where N and iterations are specified by statsCtrl. Assign the stacked subregion back to the coadd.Parameters: - coaddExposure :
lsst.afw.image.Exposure
The target exposure for the coadd.
- bbox :
lsst.afw.geom.Box
Sub-region to coadd.
- tempExpRefList :
list
List of data reference to tempExp.
- imageScalerList :
list
List of image scalers.
- weightList :
list
List of weights.
- altMaskList :
list
List of alternate masks to use rather than those stored with tempExp, or None. Each element is dict with keys = mask plane name to which to add the spans.
- statsFlags :
lsst.afw.math.Property
Property object for statistic for coadd.
- statsCtrl :
lsst.afw.math.StatisticsControl
Statistics control object for coadd.
- nImage :
lsst.afw.image.ImageU
, optional Keeps track of exposure count for each pixel.
- coaddExposure :
-
emptyMetadata
()¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
getAllSchemaCatalogs
()¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict
Keys are butler dataset type, values are a empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs
, not this method.- schemacatalogs :
-
getBadPixelMask
()¶ ! @brief Convenience method to provide the bitmask from the mask plane names
-
getCoaddDatasetName
(warpType='direct')¶ Return coadd name for given warpType and task config
Parameters: - warpType : string
Either ‘direct’ or ‘psfMatched’
Returns: - CoaddDatasetName :
string
-
classmethod
getDatasetTypes
(config, configClass)¶ Return dataset type descriptors defined in task configuration.
This method can be used by other methods that need to extract dataset types from task configuration (e.g.
getInputDatasetTypes
or sub-class methods).Parameters: - config :
Config
Configuration for this task. Typically datasets are defined in a task configuration.
- configClass :
type
Class of the configuration object which defines dataset type.
Returns: - Dictionary where key is the name (arbitrary) of the output dataset
- and value is the `DatasetTypeDescriptor` instance. Default
- implementation uses configuration field name as dictionary key.
- Returns empty dict if configuration has no fields with the specified
- ``configClass``.
- config :
-
getFullMetadata
()¶ Get metadata for all tasks.
Returns: - metadata :
lsst.daf.base.PropertySet
The
PropertySet
keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc..
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
()¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
classmethod
getInitInputDatasetTypes
(config)¶ Return dataset type descriptors that can be used to retrieve the
initInputs
constructor argument.Datasets used in initialization may not be associated with any Dimension (i.e. their data IDs must be empty dictionaries).
Default implementation finds all fields of type
InitInputInputDatasetConfig
in configuration (non-recursively) and uses them for constructingDatasetTypeDescriptor
instances. The names of these fields are used as keys in returned dictionary. Subclasses can override this behavior.Parameters: - config :
Config
Configuration for this task. Typically datasets are defined in a task configuration.
Returns: - Dictionary where key is the name (arbitrary) of the input dataset
- and value is the `DatasetTypeDescriptor` instance. Default
- implementation uses configuration field name as dictionary key.
- When the task requires no initialization inputs, should return an
- empty dict.
- config :
-
classmethod
getInitOutputDatasetTypes
(config)¶ Return dataset type descriptors that can be used to write the objects returned by
getOutputDatasets
.Datasets used in initialization may not be associated with any Dimension (i.e. their data IDs must be empty dictionaries).
Default implementation finds all fields of type
InitOutputDatasetConfig
in configuration (non-recursively) and uses them for constructingDatasetTypeDescriptor
instances. The names of these fields are used as keys in returned dictionary. Subclasses can override this behavior.Parameters: - config :
Config
Configuration for this task. Typically datasets are defined in a task configuration.
Returns: - Dictionary where key is the name (arbitrary) of the output dataset
- and value is the `DatasetTypeDescriptor` instance. Default
- implementation uses configuration field name as dictionary key.
- When the task produces no initialization outputs, should return an
- empty dict.
- config :
-
getInitOutputDatasets
()¶ Return persistable outputs that are available immediately after the task has been constructed.
Subclasses that operate on catalogs should override this method to return the schema(s) of the catalog(s) they produce.
It is not necessary to return the PipelineTask’s configuration or other provenance information in order for it to be persisted; that is the responsibility of the execution system.
Returns: - datasets :
dict
Dictionary with keys that match those of the dict returned by
getInitOutputDatasetTypes
values that can be written by callingButler.put
with those DatasetTypes and no data IDs. An emptydict
should be returned by tasks that produce no initialization outputs.
- datasets :
-
classmethod
getInputDatasetTypes
(config)¶ Return input dataset type descriptors
Remove input dataset types not used by the Task
-
classmethod
getOutputDatasetTypes
(config)¶ Return output dataset type descriptors
Remove output dataset types not produced by the Task
-
classmethod
getPerDatasetTypeDimensions
(config)¶ Return any Dimensions that are permitted to have different values for different DatasetTypes within the same quantum.
Parameters: - config :
Config
Configuration for this task.
Returns: Notes
Any Dimension declared to be per-DatasetType by a PipelineTask must also be declared to be per-DatasetType by other PipelineTasks in the same Pipeline.
The classic example of a per-DatasetType dimension is the
CalibrationLabel
dimension that maps to a validity range for master calibrations. When running Instrument Signature Removal, one does not care that different dataset types like flat, bias, and dark have different validity ranges, as long as those validity ranges all overlap the relevant observation.- config :
-
classmethod
getPrerequisiteDatasetTypes
(config)¶ Return the local names of input dataset types that should be assumed to exist instead of constraining what data to process with this task.
Usually, when running a
PipelineTask
, the presence of input datasets constrains the processing to be done (as defined by theQuantumGraph
generated during “preflight”). “Prerequisites” are special input datasets that do not constrain that graph, but instead cause a hard failure when missing. Calibration products and reference catalogs are examples of dataset types that should usually be marked as prerequisites.Parameters: - config :
Config
Configuration for this task. Typically datasets are defined in a task configuration.
Returns: - prerequisite :
Set
ofstr
The keys in the dictionary returned by
getInputDatasetTypes
that represent dataset types that should be considered prerequisites. Names returned here that are not keys in that dictionary are ignored; that way, if a config option removes an input dataset type onlygetInputDatasetTypes
needs to be updated.
- config :
-
getResourceConfig
()¶ Return resource configuration for this task.
Returns: - Object of type `~config.ResourceConfig` or ``None`` if resource
- configuration is not defined for this task.
-
getSchemaCatalogs
()¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict
Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for this task.
See also
Task.getAllSchemaCatalogs
Notes
Warning
Subclasses that use schemas must override this method. The default implemenation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getSkyInfo
(patchRef)¶ ! @brief Use @ref getSkyinfo to return the skyMap, tract and patch information, wcs and the outer bbox of the patch.
@param[in] patchRef data reference for sky map. Must include keys “tract” and “patch”
@return pipe_base Struct containing: - skyMap: sky map - tractInfo: information for chosen tract of sky map - patchInfo: information about chosen patch of tract - wcs: WCS of tract - bbox: outer bbox of patch, as an afwGeom Box2I
-
getTaskDict
()¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc..
- taskDict :
-
getTempExpDatasetName
(warpType='direct')¶ Return warp name for given warpType and task config
Parameters: - warpType : string
Either ‘direct’ or ‘psfMatched’
Returns: - WarpDatasetName :
string
-
getTempExpRefList
(patchRef, calExpRefList)¶ Generate list data references corresponding to warped exposures that lie within the patch to be coadded.
Parameters: - patchRef :
dataRef
Data reference for patch.
- calExpRefList :
list
List of data references for input calexps.
Returns: - tempExpRefList :
list
List of Warp/CoaddTempExp data references.
- patchRef :
-
classmethod
makeField
(doc)¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config) aSubtask = ATaskClass.makeField("a brief description of what this task does")
- doc :
-
makeSubtask
(name, **keyArgs)¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance of pex_config ConfigurableField or RegistryField.- name :
-
makeSupplementaryData
(dataRef, selectDataList=None, warpRefList=None)¶ Make additional inputs to run() specific to subclasses (Gen2)
Duplicates interface of
runDataRef
method Available to be implemented by subclasses only if they need the coadd dataRef for performing preliminary processing before assembling the coadd.Parameters: - dataRef :
lsst.daf.persistence.ButlerDataRef
Butler data reference for supplementary data.
- selectDataList :
list
List of data references to Warps.
- dataRef :
-
makeSupplementaryDataGen3
(inputData, inputDataIds, outputDataIds, butler)¶ Make additional inputs to run() specific to subclasses (Gen3)
Duplicates interface of`adaptArgsAndRun` method. Available to be implemented by subclasses only if they need the coadd dataRef for performing preliminary processing before assembling the coadd.
Parameters: - inputData :
dict
Keys are the names of the configs describing input dataset types. Values are input Python-domain data objects (or lists of objects) retrieved from data butler.
- inputDataIds :
dict
Keys are the names of the configs describing input dataset types. Values are DataIds (or lists of DataIds) that task consumes for corresponding dataset type. DataIds are guaranteed to match data objects in
inputData
.- outputDataIds :
dict
Keys are the names of the configs describing input dataset types. Values are DataIds (or lists of DataIds) that task is to produce for corresponding dataset type.
- butler :
lsst.daf.butler.Butler
Gen3 Butler object for fetching additional data products before running the Task
Returns: - result :
lsst.pipe.base.Struct
Contains whatever additional data the subclass’s
run
method needs
- inputData :
-
classmethod
parseAndRun
(args=None, config=None, log=None, doReturnResults=False)¶ Parse an argument list and run the command.
Parameters: - args :
list
, optional - config :
lsst.pex.config.Config
-type, optional Config for task. If
None
useTask.ConfigClass
.- log :
lsst.log.Log
-type, optional Log. If
None
use the default log.- doReturnResults :
bool
, optional If
True
, return the results of this task. Default isFalse
. This is only intended for unit tests and similar use. It can easily exhaust memory (if the task returns enough data and you call it enough times) and it will fail when using multiprocessing if the returned data cannot be pickled.
Returns: - struct :
lsst.pipe.base.Struct
Fields are:
argumentParser
: the argument parser.parsedCmd
: the parsed command returned by the argument parser’slsst.pipe.base.ArgumentParser.parse_args
method.taskRunner
: the task runner used to run the task (an instance ofTask.RunnerClass
).
Notes
Calling this method with no arguments specified is the standard way to run a command-line task from the command-line. For an example see
pipe_tasks
bin/makeSkyMap.py
or almost any other file in that directory.If one or more of the dataIds fails then this routine will exit (with a status giving the number of failed dataIds) rather than returning this struct; this behaviour can be overridden by specifying the
--noExit
command-line option.- args :
-
prepareInputs
(refList)¶ Prepare the input warps for coaddition by measuring the weight for each warp and the scaling for the photometric zero point.
Each Warp has its own photometric zeropoint and background variance. Before coadding these Warps together, compute a scale factor to normalize the photometric zeropoint and compute the weight for each Warp.
Parameters: - refList :
list
List of data references to tempExp
Returns: - result :
lsst.pipe.base.Struct
Result struct with components:
- refList :
-
prepareStats
(mask=None)¶ Prepare the statistics for coadding images.
Parameters: - mask :
int
, optional Bit mask value to exclude from coaddition.
Returns: - stats :
lsst.pipe.base.Struct
Statistics structure with the following fields:
statsCtrl
: Statistics control object for coadd- (
lsst.afw.math.StatisticsControl
)
statsFlags
: Statistic for coadd (lsst.afw.math.Property
)
- mask :
-
processResults
(coaddExposure, dataRef)¶ Interpolate over missing data and mask bright stars.
Parameters: - coaddExposure :
lsst.afw.image.Exposure
The coadded exposure to process.
- dataRef :
lsst.daf.persistence.ButlerDataRef
Butler data reference for supplementary data.
- coaddExposure :
-
readBrightObjectMasks
(dataRef)¶ Retrieve the bright object masks.
Returns None on failure.
Parameters: - dataRef :
lsst.daf.persistence.butlerSubset.ButlerDataRef
A Butler dataRef.
Returns: - result :
lsst.daf.persistence.butlerSubset.ButlerDataRef
Bright object mask from the Butler object, or None if it cannot be retrieved.
- dataRef :
-
removeMaskPlanes
(maskedImage)¶ Unset the mask of an image for mask planes specified in the config.
Parameters: - maskedImage :
lsst.afw.image.MaskedImage
The masked image to be modified.
- maskedImage :
-
run
(skyInfo, tempExpRefList, imageScalerList, weightList, altMaskList=None, mask=None, supplementaryData=None)¶ Assemble a coadd from input warps
Assemble the coadd using the provided list of coaddTempExps. Since the full coadd covers a patch (a large area), the assembly is performed over small areas on the image at a time in order to conserve memory usage. Iterate over subregions within the outer bbox of the patch using
assembleSubregion
to stack the corresponding subregions from the coaddTempExps with the statistic specified. Set the edge bits the coadd mask based on the weight map.Parameters: - skyInfo :
lsst.pipe.base.Struct
Struct with geometric information about the patch.
- tempExpRefList :
list
List of data references to Warps (previously called CoaddTempExps).
- imageScalerList :
list
List of image scalers.
- weightList :
list
List of weights
- altMaskList :
list
, optional List of alternate masks to use rather than those stored with tempExp.
- mask :
int
, optional Bit mask value to exclude from coaddition.
- supplementaryData : lsst.pipe.base.Struct, optional
Struct with additional data products needed to assemble coadd. Only used by subclasses that implement
makeSupplementaryData
and overriderun
.
Returns: - result :
lsst.pipe.base.Struct
Result struct with components:
coaddExposure
: coadded exposure (lsst.afw.image.Exposure
).nImage
: exposure count image (lsst.afw.image.Image
).
- skyInfo :
-
runDataRef
(dataRef, selectDataList=None, warpRefList=None)¶ Assemble a coadd from a set of Warps.
Pipebase.CmdlineTask entry point to Coadd a set of Warps. Compute weights to be applied to each Warp and find scalings to match the photometric zeropoint to a reference Warp. Assemble the Warps using
run
. Interpolate over NaNs and optionally write the coadd to disk. Return the coadded exposure.Parameters: - dataRef :
lsst.daf.persistence.butlerSubset.ButlerDataRef
Data reference defining the patch for coaddition and the reference Warp (if
config.autoReference=False
). Used to access the following data products: -self.config.coaddName + "Coadd_skyMap"
-self.config.coaddName + "Coadd_ + <warpType> + "Warp"
(optionally) -self.config.coaddName + "Coadd"
- selectDataList :
list
List of data references to Calexps. Data to be coadded will be selected from this list based on overlap with the patch defined by dataRef, grouped by visit, and converted to a list of data references to warps.
- warpRefList :
list
List of data references to Warps to be coadded. Note:
warpRefList
is just the new name fortempExpRefList
.
Returns: - retStruct :
lsst.pipe.base.Struct
Result struct with components:
coaddExposure
: coadded exposure (Exposure
).nImage
: exposure count image (Image
).
- dataRef :
-
runQuantum
(quantum, butler)¶ Execute PipelineTask algorithm on single quantum of data.
Typical implementation of this method will use inputs from quantum to retrieve Python-domain objects from data butler and call
adaptArgsAndRun
method on that data. On return fromadaptArgsAndRun
this method will extract data from returnedStruct
instance and save that data to butler.The
Struct
returned fromadaptArgsAndRun
is expected to contain data attributes with the names equal to the names of the configuration fields defining output dataset types. The values of the data attributes must be data objects corresponding to the DataIds of output dataset types. All data objects will be saved in butler using DataRefs from Quantum’s output dictionary.This method does not return anything to the caller, on errors corresponding exception is raised.
Parameters: - quantum :
Quantum
Object describing input and output corresponding to this invocation of PipelineTask instance.
- butler : object
Data butler instance.
Raises: - `ScalarError` if a dataset type is configured as scalar but receives
- multiple DataIds in `quantum`. Any exceptions that happen in data
- butler or in `adaptArgsAndRun` method.
- quantum :
-
saveStruct
(struct, outputDataRefs, butler)¶ Save data in butler.
Convention is that struct returned from
run()
method has data field(s) with the same names as the config fields defining output DatasetTypes. Subclasses may override this method to implement different convention forStruct
content or in case any post-processing of data may be needed.Parameters: - struct :
Struct
Data produced by the task packed into
Struct
instance- outputDataRefs :
dict
Dictionary whose keys are the names of the configuration fields describing output dataset types and values are lists of DataRefs. DataRefs must match corresponding data objects in
struct
in number and order.- butler : object
Data butler instance.
- struct :
-
selectExposures
(patchRef, skyInfo=None, selectDataList=[])¶ ! @brief Select exposures to coadd
Get the corners of the bbox supplied in skyInfo using @ref afwGeom.Box2D and convert the pixel positions of the bbox corners to sky coordinates using @ref skyInfo.wcs.pixelToSky. Use the @ref WcsSelectImagesTask_ “WcsSelectImagesTask” to select exposures that lie inside the patch indicated by the dataRef.
- @param[in] patchRef data reference for sky map patch. Must include keys “tract”, “patch”,
- plus the camera-specific filter key (e.g. “filter” or “band”)
@param[in] skyInfo geometry for the patch; output from getSkyInfo @return a list of science exposures to coadd, as butler data references
-
setBrightObjectMasks
(exposure, dataId, brightObjectMasks)¶ Set the bright object masks.
Parameters: - exposure :
lsst.afw.image.Exposure
Exposure under consideration.
- dataId :
lsst.daf.persistence.dataId
Data identifier dict for patch.
- brightObjectMasks :
lsst.afw.table
Table of bright objects to mask.
- exposure :
-
setInexactPsf
(mask)¶ Set INEXACT_PSF mask plane.
If any of the input images isn’t represented in the coadd (due to clipped pixels or chip gaps), the
CoaddPsf
will be inexact. Flag these pixels.Parameters: - mask :
lsst.afw.image.Mask
Coadded exposure’s mask, modified in-place.
- mask :
-
static
setRejectedMaskMapping
(statsCtrl)¶ Map certain mask planes of the warps to new planes for the coadd.
If a pixel is rejected due to a mask value other than EDGE, NO_DATA, or CLIPPED, set it to REJECTED on the coadd. If a pixel is rejected due to EDGE, set the coadd pixel to SENSOR_EDGE. If a pixel is rejected due to CLIPPED, set the coadd pixel to CLIPPED.
Parameters: - statsCtrl :
lsst.afw.math.StatisticsControl
Statistics control object for coadd
Returns: - statsCtrl :
-
shrinkValidPolygons
(coaddInputs)¶ Shrink coaddInputs’ ccds’ ValidPolygons in place.
Either modify each ccd’s validPolygon in place, or if CoaddInputs does not have a validPolygon, create one from its bbox.
Parameters: - coaddInputs :
lsst.afw.image.coaddInputs
Original mask.
- coaddInputs :
-
timer
(name, logLevel=10000)¶ Context manager to log performance data for an arbitrary block of code.
Parameters: - name :
str
Name of code being timed; data will be logged using item name:
Start
andEnd
.- logLevel
A
lsst.log
level constant.
See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- name :
-
writeConfig
(butler, clobber=False, doBackup=True)¶ Write the configuration used for processing the data, or check that an existing one is equal to the new one if present.
Parameters: - butler :
lsst.daf.persistence.Butler
Data butler used to write the config. The config is written to dataset type
CmdLineTask._getConfigName
.- clobber :
bool
, optional A boolean flag that controls what happens if a config already has been saved: -
True
: overwrite or rename the existing config, depending ondoBackup
. -False
: raiseTaskError
if this config does not match the existing config.- doBackup : bool, optional
Set to
True
to backup the config files if clobbering.
- butler :
-
writeMetadata
(dataRef)¶ Write the metadata produced from processing the data.
Parameters: - dataRef
Butler data reference used to write the metadata. The metadata is written to dataset type
CmdLineTask._getMetadataName
.
-
writePackageVersions
(butler, clobber=False, doBackup=True, dataset='packages')¶ Compare and write package versions.
Parameters: - butler :
lsst.daf.persistence.Butler
Data butler used to read/write the package versions.
- clobber :
bool
, optional A boolean flag that controls what happens if versions already have been saved: -
True
: overwrite or rename the existing version info, depending ondoBackup
. -False
: raiseTaskError
if this version info does not match the existing.- doBackup :
bool
, optional If
True
and clobbering, old package version files are backed up.- dataset :
str
, optional Name of dataset to read/write.
Raises: - TaskError
Raised if there is a version mismatch with current and persisted lists of package versions.
Notes
Note that this operation is subject to a race condition.
- butler :
-
writeSchemas
(butler, clobber=False, doBackup=True)¶ Write the schemas returned by
lsst.pipe.base.Task.getAllSchemaCatalogs
.Parameters: - butler :
lsst.daf.persistence.Butler
Data butler used to write the schema. Each schema is written to the dataset type specified as the key in the dict returned by
getAllSchemaCatalogs
.- clobber :
bool
, optional A boolean flag that controls what happens if a schema already has been saved: -
True
: overwrite or rename the existing schema, depending ondoBackup
. -False
: raiseTaskError
if this schema does not match the existing schema.- doBackup :
bool
, optional Set to
True
to backup the schema files if clobbering.
Notes
If
clobber
isFalse
and an existing schema does not match a current schema, then some schemas may have been saved successfully and others may not, and there is no easy way to tell which is which.- butler :