DecorrelateALKernelMapper¶
- 
class lsst.ip.diffim.DecorrelateALKernelMapper(*args, **kwargs)¶
- Bases: - lsst.ip.diffim.DecorrelateALKernelTask,- lsst.ip.diffim.ImageMapper- Task to be used as an ImageMapper for performing A&L decorrelation on subimages on a grid across a A&L difference image. - This task subclasses DecorrelateALKernelTask in order to implement all of that task’s configuration parameters, as well as its - runmethod.- Methods Summary - computeCorrectedDiffimPsf(kappa, psf[, …])- Compute the (decorrelated) difference image’s new PSF. - computeVarianceMean(exposure)- emptyMetadata()- Empty (clear) the metadata for this Task and all sub-Tasks. - getAllSchemaCatalogs()- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - getFullMetadata()- Get metadata for all tasks. - getFullName()- Get the task name as a hierarchical name including parent task names. - getName()- Get the name of the task. - getSchemaCatalogs()- Get the schemas generated by this task. - getTaskDict()- Get a dictionary of all tasks as a shallow copy. - makeField(doc)- Make a - lsst.pex.config.ConfigurableFieldfor this task.- makeSubtask(name, **keyArgs)- Create a subtask as a new instance as the - nameattribute of this task.- run(subExposure, expandedSubExposure, …[, …])- Perform decorrelation operation on - subExposure, using- expandedSubExposureto allow for invalid edge pixels arising from convolutions.- timer(name[, logLevel])- Context manager to log performance data for an arbitrary block of code. - Methods Documentation - 
static computeCorrectedDiffimPsf(kappa, psf, svar=0.04, tvar=0.04)¶
- Compute the (decorrelated) difference image’s new PSF. new_psf = psf(k) * sqrt((svar + tvar) / (svar + tvar * kappa_ft(k)**2)) - Parameters: - kappa : numpy.ndarray
- A matching kernel array derived from Alard & Lupton PSF matching 
- psf : numpy.ndarray
- The uncorrected psf array of the science image (and also of the diffim) 
- svar : float, optional
- Average variance of science image used for PSF matching 
- tvar : float, optional
- Average variance of template image used for PSF matching 
 - Returns: - pcf : numpy.ndarray
- a 2-d numpy.array containing the new PSF 
 
- kappa : 
 - 
computeVarianceMean(exposure)¶
 - 
emptyMetadata()¶
- Empty (clear) the metadata for this Task and all sub-Tasks. 
 - 
getAllSchemaCatalogs()¶
- Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. - Returns: - schemacatalogs : dict
- Keys are butler dataset type, values are a empty catalog (an instance of the appropriate lsst.afw.table Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks. 
 - Notes - This method may be called on any task in the hierarchy; it will return the same answer, regardless. - The default implementation should always suffice. If your subtask uses schemas the override - Task.getSchemaCatalogs, not this method.
- schemacatalogs : 
 - 
getFullMetadata()¶
- Get metadata for all tasks. - Returns: - metadata : lsst.daf.base.PropertySet
- The - PropertySetkeys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc..
 - Notes - The returned metadata includes timing information (if - @timer.timeMethodis used) and any metadata set by the task. The name of each item consists of the full task name with- .replaced by- :, followed by- .and the name of the item, e.g.:- topLevelTaskName:subtaskName:subsubtaskName.itemName - using - :in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.
- metadata : 
 - 
getFullName()¶
- Get the task name as a hierarchical name including parent task names. - Returns: - fullName : str
- The full name consists of the name of the parent task and each subtask separated by periods. For example: - The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
 
 
- fullName : 
 - 
getSchemaCatalogs()¶
- Get the schemas generated by this task. - Returns: - schemaCatalogs : dict
- Keys are butler dataset type, values are an empty catalog (an instance of the appropriate - lsst.afw.tableCatalog type) for this task.
 - See also - Task.getAllSchemaCatalogs- Notes - Warning - Subclasses that use schemas must override this method. The default implemenation returns an empty dict. - This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data. - Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well. 
- schemaCatalogs : 
 - 
getTaskDict()¶
- Get a dictionary of all tasks as a shallow copy. - Returns: - taskDict : dict
- Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.. 
 
- taskDict : 
 - 
classmethod makeField(doc)¶
- Make a - lsst.pex.config.ConfigurableFieldfor this task.- Parameters: - doc : str
- Help text for the field. 
 - Returns: - configurableField : lsst.pex.config.ConfigurableField
- A - ConfigurableFieldfor this task.
 - Examples - Provides a convenient way to specify this task is a subtask of another task. - Here is an example of use: - class OtherTaskConfig(lsst.pex.config.Config) aSubtask = ATaskClass.makeField("a brief description of what this task does") 
- doc : 
 - 
makeSubtask(name, **keyArgs)¶
- Create a subtask as a new instance as the - nameattribute of this task.- Parameters: - name : str
- Brief name of the subtask. 
- keyArgs
- Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden: - “config”.
- “parentTask”.
 
 - Notes - The subtask must be defined by - Task.config.name, an instance of pex_config ConfigurableField or RegistryField.
- name : 
 - 
run(subExposure, expandedSubExposure, fullBBox, template, science, alTaskResult=None, psfMatchingKernel=None, preConvKernel=None, **kwargs)¶
- Perform decorrelation operation on - subExposure, using- expandedSubExposureto allow for invalid edge pixels arising from convolutions.- This method performs A&L decorrelation on - subExposureusing local measures for image variances and PSF.- subExposureis a sub-exposure of the non-decorrelated A&L diffim. It also requires the corresponding sub-exposures of the template (- template) and science (- science) exposures.- Parameters: - subExposure : lsst.afw.image.Exposure
- the sub-exposure of the diffim 
- expandedSubExposure : lsst.afw.image.Exposure
- the expanded sub-exposure upon which to operate 
- fullBBox : lsst.geom.Box2I
- the bounding box of the original exposure 
- template : lsst.afw.image.Exposure
- the corresponding sub-exposure of the template exposure 
- science : lsst.afw.image.Exposure
- the corresponding sub-exposure of the science exposure 
- alTaskResult : lsst.pipe.base.Struct
- the result of A&L image differencing on - scienceand- template, importantly containing the resulting- psfMatchingKernel. Can be- None, only if- psfMatchingKernelis not- None.
- psfMatchingKernel : Alternative parameter for passing the
- A&L - psfMatchingKerneldirectly.
- preConvKernel : If not None, then pre-filtering was applied
- to science exposure, and this is the pre-convolution kernel. 
- kwargs :
- additional keyword arguments propagated from - ImageMapReduceTask.run.
 - Returns: - A `pipeBase.Struct` containing:
- subExposure: the result of the- subExposureprocessing.
- decorrelationKernel: the decorrelation kernel, currently
- not used.
 
 
 - Notes - This - runmethod accepts parameters identical to those of- ImageMapper.run, since it is called from the- ImageMapperTask. See that class for more information.
- subExposure : 
 - 
timer(name, logLevel=10000)¶
- Context manager to log performance data for an arbitrary block of code. - Parameters: - name : str
- Name of code being timed; data will be logged using item name: - Startand- End.
- logLevel
- A - lsst.loglevel constant.
 - See also - timer.logInfo- Examples - Creating a timer context: - with self.timer("someCodeToTime"): pass # code to time 
- name : 
 
- 
static