MetricConnections¶
-
class
lsst.verify.tasks.MetricConnections(*, config: PipelineTaskConfig = None)¶ Bases:
lsst.pipe.base.PipelineTaskConnectionsAn abstract connections class defining a metric output.
This class assumes detector-level metrics, which is the most common case. Subclasses can redeclare
measurementanddimensionsto override this assumption.Notes
MetricConnectionsdefines the following dataset templates:package- Name of the metric’s namespace. By verify_metrics convention, this is the name of the package the metric is most closely associated with.
metric- Name of the metric, excluding any namespace.
Attributes Summary
allConnectionsdefaultTemplatesdimensionsinitInputsinitOutputsinputsmeasurementoutputsprerequisiteInputsMethods Summary
adjustQuantum(datasetRefMap)Override to make adjustments to lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.buildDatasetRefs(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections= {'measurement': Output(name='metricvalue_{package}_{metric}', storageClass='MetricValue', doc='The metric value computed by this task.', multiple=False, dimensions={'detector', 'instrument', 'visit'})}¶
-
defaultTemplates= {'metric': None, 'package': None}¶
-
dimensions= {'detector', 'instrument', 'visit'}¶
-
initInputs= frozenset()¶
-
initOutputs= frozenset()¶
-
inputs= frozenset()¶
-
measurement¶
-
outputs= frozenset({'measurement'})¶
-
prerequisiteInputs= frozenset()¶
Methods Documentation
-
adjustQuantum(datasetRefMap: lsst.pipe.base.connections.InputQuantizedConnection)¶ Override to make adjustments to
lsst.daf.butler.DatasetRefobjects in thelsst.daf.butler.core.Quantumduring the graph generation stage of the activator.Parameters: - datasetRefMap :
dict Mapping with keys of dataset type name to
listoflsst.daf.butler.DatasetRefobjects
Returns: - datasetRefMap :
dict Modified mapping of input with possible adjusted
lsst.daf.butler.DatasetRefobjects
Raises: - Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tupleof (InputQuantizedConnection, OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :