AssembleCoaddConnections¶
-
class
lsst.pipe.tasks.assembleCoadd.
AssembleCoaddConnections
(*, config=None)¶ Bases:
lsst.pipe.base.PipelineTaskConnections
Attributes Summary
allConnections
brightObjectMask
coaddExposure
defaultTemplates
dimensions
initInputs
initOutputs
inputWarps
inputs
nImage
outputs
prerequisiteInputs
skyMap
Methods Summary
adjustQuantum
(datasetRefMap)Override to make adjustments to lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.buildDatasetRefs
(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections
= {'brightObjectMask': PrerequisiteInput(name='brightObjectMask', storageClass='ObjectMaskCatalog', doc='Input Bright Object Mask mask produced with external catalogs to be applied to the mask plane BRIGHT_OBJECT.', multiple=False, dimensions=('tract', 'patch', 'skymap', 'abstract_filter'), deferLoad=False), 'coaddExposure': Output(name='{fakesType}{outputCoaddName}Coadd{warpTypeSuffix}', storageClass='ExposureF', doc='Output coadded exposure, produced by stacking input warps', multiple=False, dimensions=('tract', 'patch', 'skymap', 'abstract_filter')), 'inputWarps': Input(name='{inputCoaddName}Coadd_{warpType}Warp', storageClass='ExposureF', doc='Input list of warps to be assemebled i.e. stacked.WarpType (e.g. direct, psfMatched) is controlled by the warpType config parameter', multiple=True, dimensions=('tract', 'patch', 'skymap', 'visit', 'instrument'), deferLoad=True), 'nImage': Output(name='{outputCoaddName}Coadd_nImage', storageClass='ImageU', doc='Output image of number of input images per pixel', multiple=False, dimensions=('tract', 'patch', 'skymap', 'abstract_filter')), 'skyMap': Input(name='{inputCoaddName}Coadd_skyMap', storageClass='SkyMap', doc='Input definition of geometry/bbox and projection/wcs for coadded exposures', multiple=False, dimensions=('skymap',), deferLoad=False)}¶
-
brightObjectMask
¶
-
coaddExposure
¶
-
defaultTemplates
= {'fakesType': '', 'inputCoaddName': 'deep', 'outputCoaddName': 'deep', 'warpType': 'direct', 'warpTypeSuffix': ''}¶
-
dimensions
= {'abstract_filter', 'skymap', 'tract', 'patch'}¶
-
initInputs
= frozenset()¶
-
initOutputs
= frozenset()¶
-
inputWarps
¶
-
inputs
= frozenset({'skyMap', 'inputWarps'})¶
-
nImage
¶
-
outputs
= frozenset({'coaddExposure', 'nImage'})¶
-
prerequisiteInputs
= frozenset({'brightObjectMask'})¶
-
skyMap
¶
Methods Documentation
-
adjustQuantum
(datasetRefMap: lsst.pipe.base.connections.InputQuantizedConnection)¶ Override to make adjustments to
lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.Parameters: - datasetRefMap :
dict
Mapping with keys of dataset type name to
list
oflsst.daf.butler.DatasetRef
objects
Returns: - datasetRefMap :
dict
Modified mapping of input with possible adjusted
lsst.daf.butler.DatasetRef
objects
Raises: - Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs
(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum
Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tuple
of (InputQuantizedConnection
, OutputQuantizedConnection
) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-