ForcedPhotImageConnections¶
-
class
lsst.meas.base.
ForcedPhotImageConnections
(*, config: PipelineTaskConfig = None)¶ Bases:
lsst.pipe.base.PipelineTaskConnections
Attributes Summary
allConnections
defaultTemplates
dimensions
exposure
initInputs
initOutputs
inputSchema
inputs
measCat
outputSchema
outputs
prerequisiteInputs
refCat
refWcs
Methods Summary
adjustQuantum
(datasetRefMap)Override to make adjustments to lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.buildDatasetRefs
(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections
= {'exposure': Input(name='{inputCoaddName}Coadd', storageClass='ExposureF', doc='Input exposure to perform photometry on.', multiple=False, dimensions=['abstract_filter', 'skymap', 'tract', 'patch'], deferLoad=False), 'inputSchema': InitInput(name='{inputCoaddName}Coadd_ref_schema', storageClass='SourceCatalog', doc='Schema for the input measurement catalogs.', multiple=False), 'measCat': Output(name='{outputCoaddName}Coadd_forced_src', storageClass='SourceCatalog', doc='Output forced photometry catalog.', multiple=False, dimensions=['abstract_filter', 'skymap', 'tract', 'patch']), 'outputSchema': InitOutput(name='{outputCoaddName}Coadd_forced_src_schema', storageClass='SourceCatalog', doc='Schema for the output forced measurement catalogs.', multiple=False), 'refCat': Input(name='{inputCoaddName}Coadd_ref', storageClass='SourceCatalog', doc='Catalog of shapes and positions at which to force photometry.', multiple=False, dimensions=['skymap', 'tract', 'patch'], deferLoad=False), 'refWcs': Input(name='{inputCoaddName}Coadd.wcs', storageClass='Wcs', doc='Reference world coordinate system.', multiple=False, dimensions=['abstract_filter', 'skymap', 'tract', 'patch'], deferLoad=False)}¶
-
defaultTemplates
= {'inputCoaddName': 'deep', 'outputCoaddName': 'deep'}¶
-
dimensions
= {'abstract_filter', 'tract', 'patch', 'skymap'}¶
-
exposure
¶
-
initInputs
= frozenset({'inputSchema'})¶
-
initOutputs
= frozenset({'outputSchema'})¶
-
inputSchema
¶
-
inputs
= frozenset({'refCat', 'refWcs', 'exposure'})¶
-
measCat
¶
-
outputSchema
¶
-
outputs
= frozenset({'measCat'})¶
-
prerequisiteInputs
= frozenset()¶
-
refCat
¶
-
refWcs
¶
Methods Documentation
-
adjustQuantum
(datasetRefMap: lsst.pipe.base.connections.InputQuantizedConnection)¶ Override to make adjustments to
lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.Parameters: - datasetRefMap :
dict
Mapping with keys of dataset type name to
list
oflsst.daf.butler.DatasetRef
objects
Returns: - datasetRefMap :
dict
Modified mapping of input with possible adjusted
lsst.daf.butler.DatasetRef
objects
Raises: - Exception
Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.
- datasetRefMap :
-
buildDatasetRefs
(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum
Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tuple
of (InputQuantizedConnection
, OutputQuantizedConnection
) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-