PipelineTaskConnections¶
- 
class lsst.pipe.base.PipelineTaskConnections(*, config: PipelineTaskConfig = None)¶
- Bases: - object- PipelineTaskConnections is a class used to declare desired IO when a PipelineTask is run by an activator - Parameters: - config : PipelineTaskConfig
- A - PipelineTaskConfigclass instance whose class has been configured to use this- PipelineTaskConnectionsClass
 - Notes - PipelineTaskConnectionclasses are created by declaring class attributes of types defined in- lsst.pipe.base.connectionTypesand are listed as follows:- InitInput- Defines connections in a quantum graph which are used as inputs to the- __init__function of the- PipelineTaskcorresponding to this class
- InitOuput- Defines connections in a quantum graph which are to be persisted using a butler at the end of the- __init__function of the- PipelineTaskcorresponding to this class. The variable name used to define this connection should be the same as an attribute name on the- PipelineTaskinstance. E.g. if an- InitOutputis declared with the name- outputSchemain a- PipelineTaskConnectionsclass, then a- PipelineTaskinstance should have an attribute- self.outputSchemadefined. Its value is what will be saved by the activator framework.
- PrerequisiteInput- An input connection type that defines a- lsst.daf.butler.DatasetTypethat must be present at execution time, but that will not be used during the course of creating the quantum graph to be executed. These most often are things produced outside the processing pipeline, such as reference catalogs.
- Input- Input- lsst.daf.butler.DatasetTypeobjects that will be used in the- runmethod of a- PipelineTask. The name used to declare class attribute must match a function argument name in the- runmethod of a- PipelineTask. E.g. If the- PipelineTaskConnectionsdefines an- Inputwith the name- calexp, then the corresponding signature should be- PipelineTask.run(calexp, ...)
- Output- A- lsst.daf.butler.DatasetTypethat will be produced by an execution of a- PipelineTask. The name used to declare the connection must correspond to an attribute of a- Structthat is returned by a- PipelineTask- runmethod. E.g. if an output connection is defined with the name- measCat, then the corresponding- PipelineTask.runmethod must return- Struct(measCat=X,..)where X matches the- storageClasstype defined on the output connection.
 - The process of declaring a - PipelineTaskConnectionclass involves parameters passed in the declaration statement.- The first parameter is - dimensionswhich is an iterable of strings which defines the unit of processing the run method of a corresponding- PipelineTaskwill operate on. These dimensions must match dimensions that exist in the butler registry which will be used in executing the corresponding- PipelineTask.- The second parameter is labeled - defaultTemplatesand is conditionally optional. The name attributes of connections can be specified as python format strings, with named format arguments. If any of the name parameters on connections defined in a- PipelineTaskConnectionsclass contain a template, then a default template value must be specified in the- defaultTemplatesargument. This is done by passing a dictionary with keys corresponding to a template identifier, and values corresponding to the value to use as a default when formatting the string. For example if- ConnectionClass.calexp.name = '{input}Coadd_calexp'then- defaultTemplates= {‘input’: ‘deep’}.- Once a - PipelineTaskConnectionsclass is created, it is used in the creation of a- PipelineTaskConfig. This is further documented in the documentation of- PipelineTaskConfig. For the purposes of this documentation, the relevant information is that the config class allows configuration of connection names by users when running a pipeline.- Instances of a - PipelineTaskConnectionsclass are used by the pipeline task execution framework to introspect what a corresponding- PipelineTaskwill require, and what it will produce.- Examples - >>> from lsst.pipe.base import connectionTypes as cT >>> from lsst.pipe.base import PipelineTaskConnections >>> from lsst.pipe.base import PipelineTaskConfig >>> class ExampleConnections(PipelineTaskConnections, ... dimensions=("A", "B"), ... defaultTemplates={"foo": "Example"}): ... inputConnection = cT.Input(doc="Example input", ... dimensions=("A", "B"), ... storageClass=Exposure, ... name="{foo}Dataset") ... outputConnection = cT.Output(doc="Example output", ... dimensions=("A", "B"), ... storageClass=Exposure, ... name="{foo}output") >>> class ExampleConfig(PipelineTaskConfig, ... pipelineConnections=ExampleConnections): ... pass >>> config = ExampleConfig() >>> config.connections.foo = Modified >>> config.connections.outputConnection = "TotallyDifferent" >>> connections = ExampleConnections(config=config) >>> assert(connections.inputConnection.name == "ModifiedDataset") >>> assert(connections.outputConnection.name == "TotallyDifferent") - Attributes Summary - allConnections- initInputs- initOutputs- inputs- outputs- prerequisiteInputs- Methods Summary - adjustQuantum(datasetRefMap)- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- buildDatasetRefs(quantum)- Builds QuantizedConnections corresponding to input Quantum - Attributes Documentation - 
allConnections= {}¶
 - 
initInputs= frozenset()¶
 - 
initOutputs= frozenset()¶
 - 
inputs= frozenset()¶
 - 
outputs= frozenset()¶
 - 
prerequisiteInputs= frozenset()¶
 - Methods Documentation - 
adjustQuantum(datasetRefMap: lsst.pipe.base.connections.InputQuantizedConnection)¶
- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- Parameters: - datasetRefMap : dict
- Mapping with keys of dataset type name to - listof- lsst.daf.butler.DatasetRefobjects
 - Returns: - datasetRefMap : dict
- Modified mapping of input with possible adjusted - lsst.daf.butler.DatasetRefobjects
 - Raises: - Exception
- Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found. 
 
- datasetRefMap : 
 - 
buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶
- Builds QuantizedConnections corresponding to input Quantum - Parameters: - quantum : lsst.daf.butler.Quantum
- Quantum object which defines the inputs and outputs for a given unit of processing 
 - Returns: - retVal : tupleof (InputQuantizedConnection,
- OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the input- lsst.daf.butler.Quantum
 
- quantum : 
 
- config :