Butler¶
-
class
lsst.daf.butler.
Butler
(config: Union[lsst.daf.butler.core.config.Config, str, None] = None, *, butler: Optional[lsst.daf.butler._butler.Butler] = None, collection: Optional[str] = None, run: Optional[str] = None, searchPaths: Optional[List[str]] = None, writeable: Optional[bool] = None)¶ Bases:
object
Main entry point for the data access system.
Parameters: - config :
ButlerConfig
,Config
orstr
, optional. Configuration. Anything acceptable to the
ButlerConfig
constructor. If a directory path is given the configuration will be read from abutler.yaml
file in that location. IfNone
is given default values will be used.- butler :
Butler
, optional. If provided, construct a new Butler that uses the same registry and datastore as the given one, but with the given collection and run. Incompatible with the
config
,searchPaths
, andwriteable
arguments.- collection :
str
, optional Collection to use for all input lookups. May be
None
to either use the value passed torun
, or to defer passing a collection until the methods that require one are called.- run :
str
, optional Name of the run datasets should be output to; also used as a tagged collection name these dataset will be associated with. If the run does not exist, it will be created. If
collection
isNone
, this collection will be used for input lookups as well; if not, it must have the same value asrun
.- searchPaths :
list
ofstr
, optional Directory paths to search when calculating the full Butler configuration. Not used if the supplied config is already a
ButlerConfig
.- writeable :
bool
, optional Explicitly sets whether the butler supports write operations. If not provided, a read-only butler is created unless
run
is passed.
Raises: - ValueError
Raised if neither “collection” nor “run” are provided by argument or config, or if both are provided and are inconsistent.
Attributes: - config :
str
,ButlerConfig
orConfig
, optional (filename to) configuration. If this is not a
ButlerConfig
, defaults will be read. If astr
, may be the path to a directory containing a “butler.yaml” file.- datastore :
Datastore
Datastore to use for storage.
- registry :
Registry
Registry to use for lookups.
Attributes Summary
GENERATION
This is a Generation 3 Butler. Methods Summary
datasetExists
(datasetRefOrType, …)Return True if the Dataset is actually present in the Datastore. export
(*, directory, filename, format, transfer)Export datasets from the repository represented by this Butler
.get
(datasetRefOrType, …)Retrieve a stored dataset. getDeferred
(datasetRefOrType, …)Create a DeferredDatasetHandle
which can later retrieve a datasetgetDirect
(ref, *, parameters, Any]] = None)Retrieve a stored dataset. getUri
(datasetRefOrType, …)Return the URI to the Dataset. import_
(*, directory, filename, format, transfer)Import datasets exported from a different butler repository. ingest
(*datasets, transfer, run)Store and register one or more datasets that already exist on disk. isWriteable
()Return True
if thisButler
supports write operations.makeRepo
(root, config, str, None] = None, …)Create an empty data repository by adding a butler.yaml config to a repository root directory. put
(obj, datasetRefOrType, DatasetType, …)Store and register a dataset. remove
(datasetRefOrType, …)Remove a dataset from the collection and possibly the repository. transaction
()Context manager supporting Butler
transactions.validateConfiguration
(logFailures, …)Validate butler configuration. Attributes Documentation
-
GENERATION
= 3¶ This is a Generation 3 Butler.
This attribute may be removed in the future, once the Generation 2 Butler interface has been fully retired; it should only be used in transitional code.
Methods Documentation
-
datasetExists
(datasetRefOrType: Union[lsst.daf.butler.core.datasets.ref.DatasetRef, lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collection: Optional[str] = None, **kwds) → bool¶ Return True if the Dataset is actually present in the Datastore.
Parameters: - datasetRefOrType :
DatasetRef
,DatasetType
, orstr
When
DatasetRef
thedataId
should beNone
. Otherwise theDatasetType
or name thereof.- dataId :
dict
orDataCoordinate
A
dict
ofDimension
link name, value pairs that label theDatasetRef
within a Collection. WhenNone
, aDatasetRef
should be provided as the first argument.- collection :
str
, optional Collection to search, overriding
self.collection
.- kwds
Additional keyword arguments used to augment or construct a
DataCoordinate
. SeeDataCoordinate.standardize
parameters.
Raises: - LookupError
Raised if the dataset is not even present in the Registry.
- ValueError
Raised if a resolved
DatasetRef
was passed as an input, but it differs from the one found in the registry in this collection.- TypeError
Raised if
collection
andself.collection
are bothNone
.
- datasetRefOrType :
-
export
(*, directory: Optional[str] = None, filename: Optional[str] = None, format: Optional[str] = None, transfer: Optional[str] = None) → ContextManager[RepoExport]¶ Export datasets from the repository represented by this
Butler
.This method is a context manager that returns a helper object (
RepoExport
) that is used to indicate what information from the repository should be exported.Parameters: - directory :
str
, optional Directory dataset files should be written to if
transfer
is notNone
.- filename :
str
, optional Name for the file that will include database information associated with the exported datasets. If this is not an absolute path and
directory
is notNone
, it will be written todirectory
instead of the current working directory. Defaults to “export.{format}”.- format :
str
, optional File format for the database information file. If
None
, the extension offilename
will be used.- transfer :
str
, optional Transfer mode passed to
Datastore.export
.
Raises: - TypeError
Raised if the set of arguments passed is inconsistent.
Examples
Typically the
Registry.queryDimensions
andRegistry.queryDatasets
methods are used to provide the iterables over data IDs and/or datasets to be exported:with butler.export("exports.yaml") as export: # Export all flats, and the calibration_label dimensions # associated with them. export.saveDatasets(butler.registry.queryDatasets("flat"), elements=[butler.registry.dimensions["calibration_label"]]) # Export all datasets that start with "deepCoadd_" and all of # their associated data ID information. export.saveDatasets(butler.registry.queryDatasets("deepCoadd_*"))
- directory :
-
get
(datasetRefOrType: Union[lsst.daf.butler.core.datasets.ref.DatasetRef, lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, parameters: Optional[Dict[str, Any]] = None, collection: Optional[str] = None, **kwds) → Any¶ Retrieve a stored dataset.
Parameters: - datasetRefOrType :
DatasetRef
,DatasetType
, orstr
When
DatasetRef
thedataId
should beNone
. Otherwise theDatasetType
or name thereof.- dataId :
dict
orDataCoordinate
A
dict
ofDimension
link name, value pairs that label theDatasetRef
within a Collection. WhenNone
, aDatasetRef
should be provided as the first argument.- parameters :
dict
Additional StorageClass-defined options to control reading, typically used to efficiently read only a subset of the dataset.
- collection :
str
, optional Collection to search, overriding
self.collection
.- kwds
Additional keyword arguments used to augment or construct a
DataCoordinate
. SeeDataCoordinate.standardize
parameters.
Returns: - obj :
object
The dataset.
Raises: - ValueError
Raised if a resolved
DatasetRef
was passed as an input, but it differs from the one found in the registry in this collection.- LookupError
Raised if no matching dataset exists in the
Registry
.- TypeError
Raised if
collection
andself.collection
are bothNone
.
- datasetRefOrType :
-
getDeferred
(datasetRefOrType: Union[lsst.daf.butler.core.datasets.ref.DatasetRef, lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, parameters: Optional[dict] = None, collection: Optional[str] = None, **kwds) → lsst.daf.butler._deferredDatasetHandle.DeferredDatasetHandle¶ Create a
DeferredDatasetHandle
which can later retrieve a datasetParameters: - datasetRefOrType :
DatasetRef
,DatasetType
, orstr
When
DatasetRef
thedataId
should beNone
. Otherwise theDatasetType
or name thereof.- dataId :
dict
orDataCoordinate
, optional A
dict
ofDimension
link name, value pairs that label theDatasetRef
within a Collection. WhenNone
, aDatasetRef
should be provided as the first argument.- collection :
str
, optional Name of the collection to search, overriding
self.collection
.- parameters :
dict
Additional StorageClass-defined options to control reading, typically used to efficiently read only a subset of the dataset.
- collection :
str
, optional Collection to search, overriding
self.collection
.- kwds
Additional keyword arguments used to augment or construct a
DataId
. SeeDataId
parameters.
Returns: - obj :
DeferredDatasetHandle
A handle which can be used to retrieve a dataset at a later time.
Raises: - LookupError
Raised if no matching dataset exists in the
Registry
(andallowUnresolved is False
).- ValueError
Raised if a resolved
DatasetRef
was passed as an input, but it differs from the one found in the registry in this collection.- TypeError
Raised if
collection
andself.collection
are bothNone
.
- datasetRefOrType :
-
getDirect
(ref: lsst.daf.butler.core.datasets.ref.DatasetRef, *, parameters: Optional[Dict[str, Any]] = None)¶ Retrieve a stored dataset.
Unlike
Butler.get
, this method allows datasets outside the Butler’s collection to be read as long as theDatasetRef
that identifies them can be obtained separately.Parameters: - ref :
DatasetRef
Reference to an already stored dataset.
- parameters :
dict
Additional StorageClass-defined options to control reading, typically used to efficiently read only a subset of the dataset.
Returns: - obj :
object
The dataset.
- ref :
-
getUri
(datasetRefOrType: Union[lsst.daf.butler.core.datasets.ref.DatasetRef, lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, predict: bool = False, collection: Optional[str] = None, run: Optional[str] = None, **kwds) → str¶ Return the URI to the Dataset.
Parameters: - datasetRefOrType :
DatasetRef
,DatasetType
, orstr
When
DatasetRef
thedataId
should beNone
. Otherwise theDatasetType
or name thereof.- dataId :
dict
orDataCoordinate
A
dict
ofDimension
link name, value pairs that label theDatasetRef
within a Collection. WhenNone
, aDatasetRef
should be provided as the first argument.- predict :
bool
If
True
, allow URIs to be returned of datasets that have not been written.- collection :
str
, optional Collection to search, overriding
self.collection
.- run :
str
, optional Run to use for predictions, overriding
self.run
.- kwds
Additional keyword arguments used to augment or construct a
DataCoordinate
. SeeDataCoordinate.standardize
parameters.
Returns: - uri :
str
URI string pointing to the Dataset within the datastore. If the Dataset does not exist in the datastore, and if
predict
isTrue
, the URI will be a prediction and will include a URI fragment “#predicted”. If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable.
Raises: - LookupError
A URI has been requested for a dataset that does not exist and guessing is not allowed.
- ValueError
Raised if a resolved
DatasetRef
was passed as an input, but it differs from the one found in the registry in this collection.- TypeError
Raised if
collection
andself.collection
are bothNone
.
- datasetRefOrType :
-
import_
(*, directory: Optional[str] = None, filename: Optional[str] = None, format: Optional[str] = None, transfer: Optional[str] = None)¶ Import datasets exported from a different butler repository.
Parameters: - directory :
str
, optional Directory containing dataset files. If
None
, all file paths must be absolute.- filename :
str
, optional Name for the file that containing database information associated with the exported datasets. If this is not an absolute path, does not exist in the current working directory, and
directory
is notNone
, it is assumed to be indirectory
. Defaults to “export.{format}”.- format :
str
, optional File format for the database information file. If
None
, the extension offilename
will be used.- transfer :
str
, optional Transfer mode passed to
Datastore.export
.
Raises: - TypeError
Raised if the set of arguments passed is inconsistent, or if the butler is read-only.
- directory :
-
ingest
(*datasets, transfer: Optional[str] = None, run: Optional[str] = None)¶ Store and register one or more datasets that already exist on disk.
Parameters: - datasets :
FileDataset
Each positional argument is a struct containing information about a file to be ingested, including its path (either absolute or relative to the datastore root, if applicable), a
DatasetRef
, and optionally a formatter class or its fully-qualified string name. If a formatter is not provided, the formatter that would be used forput
is assumed. On successful return, allFileDataset.ref
attributes will have theirDatasetRef.id
attribute populated and allFileDataset.formatter
attributes will be set to the formatter class used.FileDataset.path
attributes may be modified to put paths in whatever the datastore considers a standardized form.- transfer :
str
, optional If not
None
, must be one of ‘move’, ‘copy’, ‘hardlink’, or ‘symlink’, indicating how to transfer the file.- run :
str
, optional The name of the run ingested datasets should be added to, overriding
self.run
.
Raises: - TypeError
Raised if the butler is read-only or if no run was provided.
- NotImplementedError
Raised if the
Datastore
does not support the given transfer mode.- DatasetTypeNotSupportedError
Raised if one or more files to be ingested have a dataset type that is not supported by the
Datastore
..- FileNotFoundError
Raised if one of the given files does not exist.
- FileExistsError
Raised if transfer is not
None
but the (internal) location the file would be moved to is already occupied.
Notes
This operation is not fully exception safe: if a database operation fails, the given
FileDataset
instances may be only partially updated.It is atomic in terms of database operations (they will either all succeed or all fail) providing the database engine implements transactions correctly. It will attempt to be atomic in terms of filesystem operations as well, but this cannot be implemented rigorously for most datastores.
- datasets :
-
static
makeRepo
(root: str, config: Union[lsst.daf.butler.core.config.Config, str, None] = None, standalone: bool = False, createRegistry: bool = True, searchPaths: Optional[List[str]] = None, forceConfigRoot: bool = True, outfile: Optional[str] = None) → lsst.daf.butler.core.config.Config¶ Create an empty data repository by adding a butler.yaml config to a repository root directory.
Parameters: - root :
str
Filesystem path to the root of the new repository. Will be created if it does not exist.
- config :
Config
orstr
, optional Configuration to write to the repository, after setting any root-dependent Registry or Datastore config options. Can not be a
ButlerConfig
or aConfigSubset
. IfNone
, default configuration will be used. Root-dependent config options specified in this config are overwritten ifforceConfigRoot
isTrue
.- standalone :
bool
If True, write all expanded defaults, not just customized or repository-specific settings. This (mostly) decouples the repository from the default configuration, insulating it from changes to the defaults (which may be good or bad, depending on the nature of the changes). Future additions to the defaults will still be picked up when initializing
Butlers
to repos created withstandalone=True
.- createRegistry :
bool
, optional If
True
create a new Registry.- searchPaths :
list
ofstr
, optional Directory paths to search when calculating the full butler configuration.
- forceConfigRoot :
bool
, optional If
False
, any values present in the suppliedconfig
that would normally be reset are not overridden and will appear directly in the output config. This allows non-standard overrides of the root directory for a datastore or registry to be given. If this parameter isTrue
the values forroot
will be forced into the resulting config if appropriate.- outfile :
str
, optional If not-
None
, the output configuration will be written to this location rather than into the repository itself. Can be a URI string. Can refer to a directory that will be used to writebutler.yaml
.
Returns: Raises: - ValueError
Raised if a ButlerConfig or ConfigSubset is passed instead of a regular Config (as these subclasses would make it impossible to support
standalone=False
).- os.error
Raised if the directory does not exist, exists but is not a directory, or cannot be created.
Notes
Note that when
standalone=False
(the default), the configuration search path (seeConfigSubset.defaultSearchPaths
) that was used to construct the repository should also be used to construct any Butlers to avoid configuration inconsistencies.- root :
-
put
(obj: Any, datasetRefOrType: Union[DatasetRef, DatasetType, str], dataId: Optional[DataId] = None, *, producer: Optional[Quantum] = None, run: Optional[str] = None, **kwds) → DatasetRef¶ Store and register a dataset.
Parameters: - obj :
object
The dataset.
- datasetRefOrType :
DatasetRef
,DatasetType
, orstr
When
DatasetRef
is provided,dataId
should beNone
. Otherwise theDatasetType
or name thereof.- dataId :
dict
orDataCoordinate
A
dict
ofDimension
link name, value pairs that label theDatasetRef
within a Collection. WhenNone
, aDatasetRef
should be provided as the second argument.- producer :
Quantum
, optional The producer.
- run :
str
, optional The name of the run the dataset should be added to, overriding
self.run
.- kwds
Additional keyword arguments used to augment or construct a
DataCoordinate
. SeeDataCoordinate.standardize
parameters.
Returns: - ref :
DatasetRef
A reference to the stored dataset, updated with the correct id if given.
Raises: - TypeError
Raised if the butler is read-only or if no run has been provided.
- obj :
-
remove
(datasetRefOrType: Union[lsst.daf.butler.core.datasets.ref.DatasetRef, lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, delete: bool = True, remember: bool = True, collection: Optional[str] = None, **kwds)¶ Remove a dataset from the collection and possibly the repository.
The identified dataset is always at least removed from the Butler’s collection. By default it is also deleted from the Datastore (e.g. files are actually deleted), but the dataset is “remembered” by retaining its row in the dataset and provenance tables in the registry.
If the dataset is a composite, all components will also be removed.
Parameters: - datasetRefOrType :
DatasetRef
,DatasetType
, orstr
When
DatasetRef
thedataId
should beNone
. Otherwise theDatasetType
or name thereof.- dataId :
dict
orDataId
A
dict
ofDimension
link name, value pairs that label theDatasetRef
within a Collection. WhenNone
, aDatasetRef
should be provided as the first argument.- delete :
bool
If
True
(default) actually delete the dataset from the Datastore (i.e. actually remove files).- remember :
bool
If
True
(default), retain dataset and provenance records in theRegistry
for this dataset.- collection :
str
, optional Collection to search, overriding
self.collection
.- kwds
Additional keyword arguments used to augment or construct a
DataId
. SeeDataId
parameters.
Raises: - TypeError
Raised if the butler is read-only, if no collection was provided, or if
delete
andremember
are bothFalse
; a dataset cannot remain in aDatastore
if itsRegistry
entries is removed.- OrphanedRecordError
Raised if
remember
isFalse
but the dataset is still present in aDatastore
not recognized by thisButler
client.- ValueError
Raised if a resolved
DatasetRef
was passed as an input, but it differs from the one found in the registry in this collection.
- datasetRefOrType :
-
validateConfiguration
(logFailures: bool = False, datasetTypeNames: Optional[Iterable[str]] = None, ignore: Optional[Iterable[str]] = None)¶ Validate butler configuration.
Checks that each
DatasetType
can be stored in theDatastore
.Parameters: - logFailures :
bool
, optional If
True
, output a log message for every validation error detected.- datasetTypeNames : iterable of
str
, optional The
DatasetType
names that should be checked. This allows only a subset to be selected.- ignore : iterable of
str
, optional Names of DatasetTypes to skip over. This can be used to skip known problems. If a named
DatasetType
corresponds to a composite, all component of thatDatasetType
will also be ignored.
Raises: - ButlerValidationError
Raised if there is some inconsistency with how this Butler is configured.
- logFailures :
- config :