Registry¶
-
class
lsst.daf.butler.registry.Registry(database: Database, universe: DimensionUniverse, *, opaque: Type[OpaqueTableStorageManager], dimensions: Type[DimensionRecordStorageManager], create: bool = False)¶ Bases:
objectRegistry interface.
Parameters: - config :
ButlerConfig,RegistryConfig,Configorstr Registry configuration
Attributes Summary
defaultConfigFilePath to configuration defaults. dimensionsThe universe of all dimensions known to the registry ( DimensionUniverse).Methods Summary
associate(collection, refs)Add existing Datasets to a collection, implicitly creating the collection if it does not already exist. attachComponent(name, parent, component)Attach a component to a dataset. deleteOpaqueData(tableName, **where)Remove records from an opaque table. disassociate(collection, refs)Remove existing Datasets from a collection. expandDataId(dataId, Mapping[str, Any], …)Expand a dimension-based data ID to include additional information. fetchOpaqueData(tableName, **where)Retrieve records from an opaque table. find(collection, datasetType, str], dataId, …)Lookup a dataset. fromConfig(config, RegistryConfig, Config, …)Create Registrysubclass instance fromconfig.getAllCollections()Get names of all the collections found in this repository. getAllDatasetTypes()Get every registered DatasetType.getDataset(id, datasetType, dataId)Retrieve a Dataset entry. getDatasetLocations(ref)Retrieve datastore locations for a given dataset. getDatasetType(name)Get the DatasetType.insertDatasetLocations(datastoreName, refs)Record that a datastore holds the given datasets. insertDatasets(datasetType, str], dataIds, …)Insert one or more datasets into the RegistryinsertDimensionData(element, str], *data, …)Insert one or more dimension records into the database. insertOpaqueData(tableName, *data)Insert records into an opaque table. isWriteable()Return Trueif this registry allows write operations, andFalseotherwise.makeQueryBuilder(summary)Return a QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable viaRegistryinterfaces.queryDatasets(datasetType, str, …)Query for and iterate over dataset references matching user-provided criteria. queryDimensions(dimensions, str]], …)Query for and iterate over data IDs matching user-provided criteria. registerDatasetType(datasetType)Add a new DatasetTypeto the Registry.registerOpaqueTable(tableName, spec)Add an opaque (to the Registry) table for use by aDatastoreor other data repository client.registerRun(name)Add a new run if one with the given name does not exist. removeDataset(ref)Remove a dataset from the Registry. removeDatasetLocation(datastoreName, ref)Remove datastore location associated with this dataset. transaction()Return a context manager that represents a transaction. Attributes Documentation
-
defaultConfigFile= None¶ Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified.
-
dimensions¶ The universe of all dimensions known to the registry (
DimensionUniverse).
Methods Documentation
-
associate(collection: str, refs: List[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Add existing Datasets to a collection, implicitly creating the collection if it does not already exist.
If a DatasetRef with the same exact
dataset_idis already in a collection nothing is changed. If aDatasetRefwith the sameDatasetType1and dimension values but with differentdataset_idexists in the collection,ValueErroris raised.Parameters: Raises: - ConflictingDefinitionError
If a Dataset with the given
DatasetRefalready exists in the given collection.- AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).
-
attachComponent(name: str, parent: lsst.daf.butler.core.datasets.ref.DatasetRef, component: lsst.daf.butler.core.datasets.ref.DatasetRef)¶ Attach a component to a dataset.
Parameters: - name :
str Name of the component.
- parent :
DatasetRef A reference to the parent dataset. Will be updated to reference the component.
- component :
DatasetRef A reference to the component dataset.
Raises: - AmbiguousDatasetError
Raised if
parent.idorcomponent.idisNone.
- name :
-
deleteOpaqueData(tableName: str, **where)¶ Remove records from an opaque table.
Parameters: - tableName :
str Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable.- where
Additional keyword arguments are interpreted as equality constraints that restrict the deleted rows (combined with AND); keyword arguments are column names and values are the values they must have.
- tableName :
-
disassociate(collection: str, refs: List[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Remove existing Datasets from a collection.
collectionandrefcombinations that are not currently associated are silently ignored.Parameters: Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).
-
expandDataId(dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions.graph.DimensionGraph] = None, records: Optional[Mapping[lsst.daf.butler.core.dimensions.elements.DimensionElement, lsst.daf.butler.core.dimensions.records.DimensionRecord]] = None, **kwds)¶ Expand a dimension-based data ID to include additional information.
Parameters: - dataId :
DataCoordinateordict, optional Data ID to be expanded; augmented and overridden by
kwds.- graph :
DimensionGraph, optional Set of dimensions for the expanded ID. If
None, the dimensions will be inferred from the keys ofdataIdandkwds. Dimensions that are indataIdorkwdsbut not ingraphare silently ignored, providing a way to extract and expand a subset of a data ID.- records : mapping [
DimensionElement,DimensionRecord], optional Dimension record data to use before querying the database for that data.
- **kwds
Additional keywords are treated like additional key-value pairs for
dataId, extending and overriding
Returns: - expanded :
ExpandedDataCoordinate A data ID that includes full metadata for all of the dimensions it identifieds.
- dataId :
-
fetchOpaqueData(tableName: str, **where) → Iterator[dict]¶ Retrieve records from an opaque table.
Parameters: - tableName :
str Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable.- where
Additional keyword arguments are interpreted as equality constraints that restrict the returned rows (combined with AND); keyword arguments are column names and values are the values they must have.
Yields: - row :
dict A dictionary representing a single result row.
- tableName :
-
find(collection: str, datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, **kwds) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Lookup a dataset.
This can be used to obtain a
DatasetRefthat permits the dataset to be read from aDatastore.Parameters: - collection :
str Identifies the collection to search.
- datasetType :
DatasetTypeorstr A
DatasetTypeor the name of one.- dataId :
dictorDataCoordinate, optional A
dict-like object containing theDimensionlinks that identify the dataset within a collection.- **kwds
Additional keyword arguments passed to
DataCoordinate.standardizeto convertdataIdto a trueDataCoordinateor augment an existing one.
Returns: - ref :
DatasetRef A ref to the Dataset, or
Noneif no matching Dataset was found.
Raises: - LookupError
If one or more data ID keys are missing.
- collection :
-
classmethod
fromConfig(config: Union[ButlerConfig, RegistryConfig, Config, str], create: bool = False, butlerRoot: Optional[str] = None, writeable: bool = True) → Registry¶ Create
Registrysubclass instance fromconfig.Uses
registry.clsfromconfigto determine which subclass to instantiate.Parameters: - config :
ButlerConfig,RegistryConfig,Configorstr Registry configuration
- create :
bool, optional Assume empty Registry and create a new one.
- butlerRoot :
str, optional Path to the repository root this
Registrywill manage.- writeable :
bool, optional If
True(default) create a read-write connection to the database.
Returns: - config :
-
getAllCollections()¶ Get names of all the collections found in this repository.
Returns:
-
getAllDatasetTypes() → FrozenSet[lsst.daf.butler.core.datasets.type.DatasetType]¶ Get every registered
DatasetType.Returns: - types :
frozensetofDatasetType Every
DatasetTypein the registry.
- types :
-
getDataset(id: int, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, dataId: Optional[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate] = None) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Retrieve a Dataset entry.
Parameters: - id :
int The unique identifier for the Dataset.
- datasetType :
DatasetType, optional The
DatasetTypeof the dataset to retrieve. This is used to short-circuit retrieving theDatasetType, so if provided, the caller is guaranteeing that it is what would have been retrieved.- dataId :
DataCoordinate, optional A
Dimension-based identifier for the dataset within a collection, possibly containing additional metadata. This is used to short-circuit retrieving the dataId, so if provided, the caller is guaranteeing that it is what would have been retrieved.
Returns: - ref :
DatasetRef A ref to the Dataset, or
Noneif no matching Dataset was found.
- id :
-
getDatasetLocations(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Set[str]¶ Retrieve datastore locations for a given dataset.
Typically used by
Datastore.Parameters: - ref :
DatasetRef A reference to the dataset for which to retrieve storage information.
Returns: Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.
- ref :
-
getDatasetType(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶ Get the
DatasetType.Parameters: - name :
str Name of the type.
Returns: - type :
DatasetType The
DatasetTypeassociated with the given name.
Raises: - KeyError
Requested named DatasetType could not be found in registry.
- name :
-
insertDatasetLocations(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Record that a datastore holds the given datasets.
Typically used by
Datastore.Parameters: Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).
-
insertDatasets(datasetType: Union[DatasetType, str], dataIds: Iterable[DataId], run: str, *, producer: Optional[Quantum] = None, recursive: bool = False) → List[DatasetRef]¶ Insert one or more datasets into the
RegistryThis always adds new datasets; to associate existing datasets with a new collection, use
associate.Parameters: - datasetType :
DatasetTypeorstr A
DatasetTypeor the name of one.- dataIds :
IterableofdictorDataCoordinate Dimension-based identifiers for the new datasets.
- run :
str The name of the run that produced the datasets.
- producer :
Quantum Unit of work that produced the datasets. May be
Noneto store no provenance information, but if present theQuantummust already have been added to the Registry.- recursive :
bool If True, recursively add datasets and attach entries for component datasets as well.
Returns: - refs :
listofDatasetRef Resolved
DatasetRefinstances for all given data IDs (in the same order).- ConflictingDefinitionError
If a dataset with the same dataset type and data ID as one of those given already exists in the given collection.
- datasetType :
-
insertDimensionData(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], *data, conform: bool = True)¶ Insert one or more dimension records into the database.
Parameters: - element :
DimensionElementorstr The
DimensionElementor name thereof that identifies the table records will be inserted into.- data :
dictorDimensionRecord(variadic) One or more records to insert.
- conform :
bool, optional If
False(Trueis default) perform no checking or conversions, and assume thatelementis aDimensionElementinstance anddatais a one or moreDimensionRecordinstances of the appropriate subclass.
- element :
-
insertOpaqueData(tableName: str, *data)¶ Insert records into an opaque table.
Parameters: - tableName :
str Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable.- data
Each additional positional argument is a dictionary that represents a single row to be added.
- tableName :
-
makeQueryBuilder(summary: lsst.daf.butler.registry.queries._structs.QuerySummary) → lsst.daf.butler.registry.queries._builder.QueryBuilder¶ Return a
QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable viaRegistryinterfaces.This is an advanced
SqlRegistry-only interface; downstream code should preferRegistry.queryDimensionsandRegistry.queryDatasetswhenever those are sufficient.Parameters: - summary: `QuerySummary`
Object describing and categorizing the full set of dimensions that will be included in the query.
Returns: - builder :
QueryBuilder Object that can be used to construct and perform advanced queries.
-
queryDatasets(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str, lsst.daf.butler.registry.queries._datasets.Like, ellipsis], *, collections: Union[Sequence[Union[str, lsst.daf.butler.registry.queries._datasets.Like]], ellipsis], dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, deduplicate: bool = False, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Query for and iterate over dataset references matching user-provided criteria.
Parameters: - datasetType :
DatasetType,str,Like, or... An expression indicating type(s) of datasets to query for.
...may be used to query for all known DatasetTypes. Multiple explicitly-provided dataset types cannot be queried in a single call toqueryDatasetseven though wildcard expressions can, because the results would be identical to chaining the iterators produced by multiple calls toqueryDatasets.- collections: `~collections.abc.Sequence` of `str` or `Like`, or ``…``
An expression indicating the collections to be searched for datasets.
...may be passed to search all collections.- dimensions :
IterableofDimensionorstr Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the
dataIdorwherearguments.- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- where :
str, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name.
- deduplicate :
bool, optional If
True(Falseis default), for each result data ID, only yield oneDatasetRefof eachDatasetType, from the first collection in which a dataset of that dataset type appears (according to the order ofcollectionspassed in). Cannot be used if any element incollectionsis an expression.- expand :
bool, optional If
True(default) attachExpandedDataCoordinateinstead of minimalDataCoordinatebase-class instances.- kwds
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Yields: - ref :
DatasetRef Dataset references matching the given query criteria. These are grouped by
DatasetTypeif the query evaluates to multiple dataset types, but order is otherwise unspecified.
Raises: - TypeError
Raised when the arguments are incompatible, such as when a collection wildcard is pass when
deduplicateisTrue.
Notes
When multiple dataset types are queried via a wildcard expression, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use
queryDimensionsto first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls toqueryDatasetswith the returned data IDs passed as constraints.- datasetType :
-
queryDimensions(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]], lsst.daf.butler.core.dimensions.elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Mapping[Union[lsst.daf.butler.core.datasets.type.DatasetType, str, lsst.daf.butler.registry.queries._datasets.Like, ellipsis], Union[Sequence[Union[str, lsst.daf.butler.registry.queries._datasets.Like]], ellipsis]]] = None, where: Optional[str] = None, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate]¶ Query for and iterate over data IDs matching user-provided criteria.
Parameters: - dimensions :
Dimensionorstr, or iterable thereof The dimensions of the data IDs to yield, as either
Dimensioninstances orstr. Will be automatically expanded to a completeDimensionGraph.- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- datasets :
Mapping, optional Datasets whose existence in the registry constrain the set of data IDs returned. This is a mapping from a dataset type expression (a
strname, a trueDatasetTypeinstance, aLikepattern for the name, or...for all DatasetTypes) to a collections expression (a sequence ofstrorLikepatterns, orfor all collections).- where :
str, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name.
- expand :
bool, optional If
True(default) yieldExpandedDataCoordinateinstead of minimalDataCoordinatebase-class instances.- kwds
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Yields: - dataId :
DataCoordinate Data IDs matching the given query parameters. Order is unspecified.
- dimensions :
-
registerDatasetType(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶ Add a new
DatasetTypeto the Registry.It is not an error to register the same
DatasetTypetwice.Parameters: - datasetType :
DatasetType The
DatasetTypeto be added.
Returns: Raises: - ValueError
Raised if the dimensions or storage class are invalid.
- ConflictingDefinitionError
Raised if this DatasetType is already registered with a different definition.
- datasetType :
-
registerOpaqueTable(tableName: str, spec: lsst.daf.butler.core.ddl.TableSpec)¶ Add an opaque (to the
Registry) table for use by aDatastoreor other data repository client.Opaque table records can be added via
insertOpaqueData, retrieved viafetchOpaqueData, and removed viadeleteOpaqueData.Parameters: - tableName :
str Logical name of the opaque table. This may differ from the actual name used in the database by a prefix and/or suffix.
- spec :
ddl.TableSpec Specification for the table to be added.
- tableName :
-
registerRun(name: str)¶ Add a new run if one with the given name does not exist.
Parameters: - name :
str The name of the run to create.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- name :
-
removeDataset(ref: lsst.daf.butler.core.datasets.ref.DatasetRef)¶ Remove a dataset from the Registry.
The dataset and all components will be removed unconditionally from all collections, and any associated
Quantumrecords will also be removed.Datastorerecords will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.Parameters: - ref :
DatasetRef Reference to the dataset to be removed. Must include a valid
idattribute, and should be considered invalidated upon return.
Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.- OrphanedRecordError
Raised if the dataset is still present in any
Datastore.
- ref :
-
removeDatasetLocation(datastoreName, ref)¶ Remove datastore location associated with this dataset.
Typically used by
Datastorewhen a dataset is removed.Parameters: - datastoreName :
str Name of this
Datastore.- ref :
DatasetRef A reference to the dataset for which information is to be removed.
Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.
- datastoreName :
-
transaction()¶ Return a context manager that represents a transaction.
- config :