Registry¶
- 
class lsst.daf.butler.Registry(database: Database, universe: DimensionUniverse, *, opaque: Type[OpaqueTableStorageManager], dimensions: Type[DimensionRecordStorageManager], collections: Type[CollectionManager], create: bool = False)¶
- Bases: - object- Registry interface. - Parameters: - config : ButlerConfig,RegistryConfig,Configorstr
- Registry configuration 
 - Attributes Summary - defaultConfigFile- Path to configuration defaults. - dimensions- The universe of all dimensions known to the registry ( - DimensionUniverse).- Methods Summary - associate(collection, refs, *, recursive)- Add existing Datasets to a collection, implicitly creating the collection if it does not already exist. - attachComponent(name, parent, component)- Attach a component to a dataset. - deleteOpaqueData(tableName, **where)- Remove records from an opaque table. - disassociate(collection, refs, *, recursive)- Remove existing Datasets from a collection. - expandDataId(dataId, Mapping[str, Any], …)- Expand a dimension-based data ID to include additional information. - fetchOpaqueData(tableName, **where)- Retrieve records from an opaque table. - findDataset(datasetType, str], dataId, …)- Find a dataset given its - DatasetTypeand data ID.- fromConfig(config, RegistryConfig, Config, …)- Create - Registrysubclass instance from- config.- getCollectionChain(parent)- Return the child collections in a - CHAINEDcollection.- getCollectionType(name)- Return an enumeration value indicating the type of the given collection. - getDataset(id, datasetType, dataId)- Retrieve a Dataset entry. - getDatasetLocations(ref)- Retrieve datastore locations for a given dataset. - getDatasetType(name)- Get the - DatasetType.- insertDatasetLocations(datastoreName, refs)- Record that a datastore holds the given datasets. - insertDatasets(datasetType, str], dataIds, …)- Insert one or more datasets into the - Registry- insertDimensionData(element, str], *data, …)- Insert one or more dimension records into the database. - insertOpaqueData(tableName, *data)- Insert records into an opaque table. - isWriteable()- Return - Trueif this registry allows write operations, and- Falseotherwise.- makeQueryBuilder(summary)- Return a - QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable via- Registryinterfaces.- queryCollections(expression, datasetType, …)- Iterate over the collections whose names match an expression. - queryDatasetTypes(expression)- Iterate over the dataset types whose names match an expression. - queryDatasets(datasetType, *, collections, …)- Query for and iterate over dataset references matching user-provided criteria. - queryDimensions(dimensions, str]], …)- Query for and iterate over data IDs matching user-provided criteria. - registerCollection(name, type)- Add a new collection if one with the given name does not exist. - registerDatasetType(datasetType)- Add a new - DatasetTypeto the Registry.- registerOpaqueTable(tableName, spec)- Add an opaque (to the - Registry) table for use by a- Datastoreor other data repository client.- registerRun(name)- Add a new run if one with the given name does not exist. - removeDataset(ref)- Remove a dataset from the Registry. - removeDatasetLocation(datastoreName, ref)- Remove datastore location associated with this dataset. - setCollectionChain(parent, children)- Define or redefine a - CHAINEDcollection.- transaction()- Return a context manager that represents a transaction. - Attributes Documentation - 
defaultConfigFile= None¶
- Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified. 
 - 
dimensions¶
- The universe of all dimensions known to the registry ( - DimensionUniverse).
 - Methods Documentation - 
associate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], *, recursive: bool = True)¶
- Add existing Datasets to a collection, implicitly creating the collection if it does not already exist. - If a DatasetRef with the same exact - dataset_idis already in a collection nothing is changed. If a- DatasetRefwith the same- DatasetType1and dimension values but with different- dataset_idexists in the collection,- ValueErroris raised.- Parameters: - collection : str
- Indicates the collection the Datasets should be associated with. 
- refs : iterable of DatasetRef
- An iterable of resolved - DatasetRefinstances that already exist in this- Registry.
- recursive : bool, optional
- If - True, associate all component datasets as well. Note that this only associates components that are actually included in the given- DatasetRefinstances, which may not be the same as those in the database (especially if they were obtained from- queryDatasets, which does not populate- DatasetRef.components).
 - Raises: - ConflictingDefinitionError
- If a Dataset with the given - DatasetRefalready exists in the given collection.
- AmbiguousDatasetError
- Raised if - any(ref.id is None for ref in refs).
- MissingCollectionError
- Raised if - collectiondoes not exist in the registry.
- TypeError
- Raise adding new datasets to the given - collectionis not allowed.
 
- collection : 
 - 
attachComponent(name: str, parent: lsst.daf.butler.core.datasets.ref.DatasetRef, component: lsst.daf.butler.core.datasets.ref.DatasetRef)¶
- Attach a component to a dataset. - Parameters: - name : str
- Name of the component. 
- parent : DatasetRef
- A reference to the parent dataset. Will be updated to reference the component. 
- component : DatasetRef
- A reference to the component dataset. 
 - Raises: - AmbiguousDatasetError
- Raised if - parent.idor- component.idis- None.
 
- name : 
 - 
deleteOpaqueData(tableName: str, **where)¶
- Remove records from an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- where
- Additional keyword arguments are interpreted as equality constraints that restrict the deleted rows (combined with AND); keyword arguments are column names and values are the values they must have. 
 
- tableName : 
 - 
disassociate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], *, recursive: bool = True)¶
- Remove existing Datasets from a collection. - collectionand- refcombinations that are not currently associated are silently ignored.- Parameters: - collection : str
- The collection the Datasets should no longer be associated with. 
- refs : iterable of DatasetRef
- An iterable of resolved - DatasetRefinstances that already exist in this- Registry.
- recursive : bool, optional
- If - True, disassociate all component datasets as well. Note that this only disassociates components that are actually included in the given- DatasetRefinstances, which may not be the same as those in the database (especially if they were obtained from- queryDatasets, which does not populate- DatasetRef.components).
 - Raises: - AmbiguousDatasetError
- Raised if - any(ref.id is None for ref in refs).
- MissingCollectionError
- Raised if - collectiondoes not exist in the registry.
- TypeError
- Raise adding new datasets to the given - collectionis not allowed.
 
- collection : 
 - 
expandDataId(dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions.graph.DimensionGraph] = None, records: Optional[Mapping[lsst.daf.butler.core.dimensions.elements.DimensionElement, lsst.daf.butler.core.dimensions.records.DimensionRecord]] = None, **kwds)¶
- Expand a dimension-based data ID to include additional information. - Parameters: - dataId : DataCoordinateordict, optional
- Data ID to be expanded; augmented and overridden by - kwds.
- graph : DimensionGraph, optional
- Set of dimensions for the expanded ID. If - None, the dimensions will be inferred from the keys of- dataIdand- kwds. Dimensions that are in- dataIdor- kwdsbut not in- graphare silently ignored, providing a way to extract and expand a subset of a data ID.
- records : mapping [DimensionElement,DimensionRecord], optional
- Dimension record data to use before querying the database for that data. 
- **kwds
- Additional keywords are treated like additional key-value pairs for - dataId, extending and overriding
 - Returns: - expanded : ExpandedDataCoordinate
- A data ID that includes full metadata for all of the dimensions it identifieds. 
 
- dataId : 
 - 
fetchOpaqueData(tableName: str, **where) → Iterator[dict]¶
- Retrieve records from an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- where
- Additional keyword arguments are interpreted as equality constraints that restrict the returned rows (combined with AND); keyword arguments are column names and values are the values they must have. 
 - Yields: - row : dict
- A dictionary representing a single result row. 
 
- tableName : 
 - 
findDataset(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collections: Any, **kwds) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Find a dataset given its - DatasetTypeand data ID.- This can be used to obtain a - DatasetRefthat permits the dataset to be read from a- Datastore.- Parameters: - datasetType : DatasetTypeorstr
- A - DatasetTypeor the name of one.
- dataId : dictorDataCoordinate, optional
- A - dict-like object containing the- Dimensionlinks that identify the dataset within a collection.
- collections
- An expression that fully or partially identifies the collections to search for the dataset, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. See Collection expressions for more information.
- **kwds
- Additional keyword arguments passed to - DataCoordinate.standardizeto convert- dataIdto a true- DataCoordinateor augment an existing one.
 - Returns: - ref : DatasetRef
- A reference to the dataset, or - Noneif no matching Dataset was found.
 - Raises: - LookupError
- Raised if one or more data ID keys are missing. 
- MissingCollectionError
- Raised if any of - collectionsdoes not exist in the registry.
 
- datasetType : 
 - 
classmethod fromConfig(config: Union[ButlerConfig, RegistryConfig, Config, str], create: bool = False, butlerRoot: Optional[str] = None, writeable: bool = True) → Registry¶
- Create - Registrysubclass instance from- config.- Uses - registry.clsfrom- configto determine which subclass to instantiate.- Parameters: - config : ButlerConfig,RegistryConfig,Configorstr
- Registry configuration 
- create : bool, optional
- Assume empty Registry and create a new one. 
- butlerRoot : str, optional
- Path to the repository root this - Registrywill manage.
- writeable : bool, optional
- If - True(default) create a read-write connection to the database.
 - Returns: 
- config : 
 - 
getCollectionChain(parent: str) → lsst.daf.butler.registry.wildcards.CollectionSearch¶
- Return the child collections in a - CHAINEDcollection.- Parameters: - parent : str
- Name of the chained collection. Must have already been added via a call to - Registry.registerCollection.
 - Returns: - children : CollectionSearch
- An object that defines the search path of the collection. See Collection expressions for more information. 
 - Raises: 
- parent : 
 - 
getCollectionType(name: str) → lsst.daf.butler.registry._collectionType.CollectionType¶
- Return an enumeration value indicating the type of the given collection. - Parameters: - name : str
- The name of the collection. 
 - Returns: - type : CollectionType
- Enum value indicating the type of this collection. 
 - Raises: - MissingCollectionError
- Raised if no collection with the given name exists. 
 
- name : 
 - 
getDataset(id: int, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, dataId: Optional[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate] = None) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Retrieve a Dataset entry. - Parameters: - id : int
- The unique identifier for the Dataset. 
- datasetType : DatasetType, optional
- The - DatasetTypeof the dataset to retrieve. This is used to short-circuit retrieving the- DatasetType, so if provided, the caller is guaranteeing that it is what would have been retrieved.
- dataId : DataCoordinate, optional
- A - Dimension-based identifier for the dataset within a collection, possibly containing additional metadata. This is used to short-circuit retrieving the dataId, so if provided, the caller is guaranteeing that it is what would have been retrieved.
 - Returns: - ref : DatasetRef
- A ref to the Dataset, or - Noneif no matching Dataset was found.
 
- id : 
 - 
getDatasetLocations(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Set[str]¶
- Retrieve datastore locations for a given dataset. - Typically used by - Datastore.- Parameters: - ref : DatasetRef
- A reference to the dataset for which to retrieve storage information. 
 - Returns: - Raises: - AmbiguousDatasetError
- Raised if - ref.idis- None.
 
- ref : 
 - 
getDatasetType(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶
- Get the - DatasetType.- Parameters: - name : str
- Name of the type. 
 - Returns: - type : DatasetType
- The - DatasetTypeassociated with the given name.
 - Raises: - KeyError
- Requested named DatasetType could not be found in registry. 
 
- name : 
 - 
insertDatasetLocations(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef])¶
- Record that a datastore holds the given datasets. - Typically used by - Datastore.- Parameters: - datastoreName : str
- Name of the datastore holding these datasets. 
- refs : IterableofDatasetRef
- References to the datasets. 
 - Raises: - AmbiguousDatasetError
- Raised if - any(ref.id is None for ref in refs).
 
- datastoreName : 
 - 
insertDatasets(datasetType: Union[DatasetType, str], dataIds: Iterable[DataId], run: str, *, producer: Optional[Quantum] = None, recursive: bool = False) → List[DatasetRef]¶
- Insert one or more datasets into the - Registry- This always adds new datasets; to associate existing datasets with a new collection, use - associate.- Parameters: - datasetType : DatasetTypeorstr
- A - DatasetTypeor the name of one.
- dataIds : IterableofdictorDataCoordinate
- Dimension-based identifiers for the new datasets. 
- run : str
- The name of the run that produced the datasets. 
- producer : Quantum
- Unit of work that produced the datasets. May be - Noneto store no provenance information, but if present the- Quantummust already have been added to the Registry.
- recursive : bool
- If True, recursively add datasets and attach entries for component datasets as well. 
 - Returns: - refs : listofDatasetRef
- Resolved - DatasetRefinstances for all given data IDs (in the same order).
 - Raises: - ConflictingDefinitionError
- If a dataset with the same dataset type and data ID as one of those given already exists in the given collection. 
- MissingCollectionError
- Raised if - rundoes not exist in the registry.
 
- datasetType : 
 - 
insertDimensionData(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], *data, conform: bool = True)¶
- Insert one or more dimension records into the database. - Parameters: - element : DimensionElementorstr
- The - DimensionElementor name thereof that identifies the table records will be inserted into.
- data : dictorDimensionRecord(variadic)
- One or more records to insert. 
- conform : bool, optional
- If - False(- Trueis default) perform no checking or conversions, and assume that- elementis a- DimensionElementinstance and- datais a one or more- DimensionRecordinstances of the appropriate subclass.
 
- element : 
 - 
insertOpaqueData(tableName: str, *data)¶
- Insert records into an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- data
- Each additional positional argument is a dictionary that represents a single row to be added. 
 
- tableName : 
 - 
makeQueryBuilder(summary: lsst.daf.butler.registry.queries._structs.QuerySummary) → lsst.daf.butler.registry.queries._builder.QueryBuilder¶
- Return a - QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable via- Registryinterfaces.- This is an advanced interface; downstream code should prefer - Registry.queryDimensionsand- Registry.queryDatasetswhenever those are sufficient.- Parameters: - summary : QuerySummary
- Object describing and categorizing the full set of dimensions that will be included in the query. 
 - Returns: - builder : QueryBuilder
- Object that can be used to construct and perform advanced queries. 
 
- summary : 
 - 
queryCollections(expression: Any = Ellipsis, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, collectionType: Optional[lsst.daf.butler.registry._collectionType.CollectionType] = None, flattenChains: bool = False, includeChains: Optional[bool] = None) → Iterator[str]¶
- Iterate over the collections whose names match an expression. - Parameters: - expression : Any, optional
- An expression that fully or partially identifies the collections to return, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections, and is the default. See Collection expressions for more information.
- datasetType : DatasetType, optional
- If provided, only yield collections that should be searched for this dataset type according to - expression. If this is not provided, any dataset type restrictions in- expressionare ignored.
- collectionType : CollectionType, optional
- If provided, only yield collections of this type. 
- flattenChains : bool, optional
- If - True(- Falseis default), recursively yield the child collections of matching- CHAINEDcollections.
- includeChains : bool, optional
- If - True, yield records for matching- CHAINEDcollections. Default is the opposite of- flattenChains: include either CHAINED collections or their children, but not both.
 - Yields: - collection : str
- The name of a collection that matches - expression.
 
- expression : 
 - 
queryDatasetTypes(expression: Any = Ellipsis) → Iterator[lsst.daf.butler.core.datasets.type.DatasetType]¶
- Iterate over the dataset types whose names match an expression. - Parameters: - expression : Any, optional
- An expression that fully or partially identifies the dataset types to return, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all dataset types, and is the default. See DatasetType expressions for more information.
 - Yields: - datasetType : DatasetType
- A - DatasetTypeinstance whose name matches- expression.
 
- expression : 
 - 
queryDatasets(datasetType: Any, *, collections: Any, dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, deduplicate: bool = False, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Query for and iterate over dataset references matching user-provided criteria. - Parameters: - datasetType
- An expression that fully or partially identifies the dataset types to be queried. Allowed types include - DatasetType,- str,- re.Pattern, and iterables thereof. The special value- can be used to query all dataset types. See DatasetType expressions for more information.
- collections
- An expression that fully or partially identifies the collections to search for datasets, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. See Collection expressions for more information.
- dimensions : IterableofDimensionorstr
- Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the - dataIdor- wherearguments.
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- where : str, optional
- A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information. 
- deduplicate : bool, optional
- If - True(- Falseis default), for each result data ID, only yield one- DatasetRefof each- DatasetType, from the first collection in which a dataset of that dataset type appears (according to the order of- collectionspassed in). If- True,- collectionsmust not contain regular expressions and may not be- .
- expand : bool, optional
- If - True(default) attach- ExpandedDataCoordinateinstead of minimal- DataCoordinatebase-class instances.
- kwds
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Yields: - ref : DatasetRef
- Dataset references matching the given query criteria. These are grouped by - DatasetTypeif the query evaluates to multiple dataset types, but order is otherwise unspecified.
 - Raises: - TypeError
- Raised when the arguments are incompatible, such as when a collection wildcard is passed when - deduplicateis- True.
 - Notes - When multiple dataset types are queried in a single call, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use - queryDimensionsto first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls to- queryDatasetswith the returned data IDs passed as constraints.
 - 
queryDimensions(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]], lsst.daf.butler.core.dimensions.elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate]¶
- Query for and iterate over data IDs matching user-provided criteria. - Parameters: - dimensions : Dimensionorstr, or iterable thereof
- The dimensions of the data IDs to yield, as either - Dimensioninstances or- str. Will be automatically expanded to a complete- DimensionGraph.
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- datasets : Any, optional
- An expression that fully or partially identifies dataset types that should constrain the yielded data IDs. For example, including “raw” here would constrain the yielded - instrument,- exposure,- detector, and- physical_filtervalues to only those for which at least one “raw” dataset exists in- collections. Allowed types include- DatasetType,- str,- re.Pattern, and iterables thereof. Unlike other dataset type expressions,- is not permitted - it doesn’t make sense to constrain data IDs on the existence of all datasets. See DatasetType expressions for more information.
- collections: `Any`, optional
- An expression that fully or partially identifies the collections to search for datasets, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. Must be provided if- datasetsis, and is ignored if it is not. See Collection expressions for more information.
- where : str, optional
- A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information. 
- expand : bool, optional
- If - True(default) yield- ExpandedDataCoordinateinstead of minimal- DataCoordinatebase-class instances.
- kwds
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Yields: - dataId : DataCoordinate
- Data IDs matching the given query parameters. Order is unspecified. 
 
- dimensions : 
 - 
registerCollection(name: str, type: lsst.daf.butler.registry._collectionType.CollectionType = <CollectionType.TAGGED: 2>)¶
- Add a new collection if one with the given name does not exist. - Parameters: - name : str
- The name of the collection to create. 
- type : CollectionType
- Enum value indicating the type of collection to create. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- name : 
 - 
registerDatasetType(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶
- Add a new - DatasetTypeto the Registry.- It is not an error to register the same - DatasetTypetwice.- Parameters: - datasetType : DatasetType
- The - DatasetTypeto be added.
 - Returns: - Raises: - ValueError
- Raised if the dimensions or storage class are invalid. 
- ConflictingDefinitionError
- Raised if this DatasetType is already registered with a different definition. 
 
- datasetType : 
 - 
registerOpaqueTable(tableName: str, spec: lsst.daf.butler.core.ddl.TableSpec)¶
- Add an opaque (to the - Registry) table for use by a- Datastoreor other data repository client.- Opaque table records can be added via - insertOpaqueData, retrieved via- fetchOpaqueData, and removed via- deleteOpaqueData.- Parameters: - tableName : str
- Logical name of the opaque table. This may differ from the actual name used in the database by a prefix and/or suffix. 
- spec : ddl.TableSpec
- Specification for the table to be added. 
 
- tableName : 
 - 
registerRun(name: str)¶
- Add a new run if one with the given name does not exist. - Parameters: - name : str
- The name of the run to create. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- name : 
 - 
removeDataset(ref: lsst.daf.butler.core.datasets.ref.DatasetRef)¶
- Remove a dataset from the Registry. - The dataset and all components will be removed unconditionally from all collections, and any associated - Quantumrecords will also be removed.- Datastorerecords will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.- Parameters: - ref : DatasetRef
- Reference to the dataset to be removed. Must include a valid - idattribute, and should be considered invalidated upon return.
 - Raises: 
- ref : 
 - 
removeDatasetLocation(datastoreName, ref)¶
- Remove datastore location associated with this dataset. - Typically used by - Datastorewhen a dataset is removed.- Parameters: - datastoreName : str
- Name of this - Datastore.
- ref : DatasetRef
- A reference to the dataset for which information is to be removed. 
 - Raises: - AmbiguousDatasetError
- Raised if - ref.idis- None.
 
- datastoreName : 
 - 
setCollectionChain(parent: str, children: Any)¶
- Define or redefine a - CHAINEDcollection.- Parameters: - parent : str
- Name of the chained collection. Must have already been added via a call to - Registry.registerCollection.
- children : Any
- An expression defining an ordered search of child collections, generally an iterable of - str. Restrictions on the dataset types to be searched can also be included, by passing mapping or an iterable containing tuples; see Collection expressions for more information.
 - Raises: 
- parent : 
 - 
transaction()¶
- Return a context manager that represents a transaction. 
 
- config :