Registry¶
-
class
lsst.daf.butler.registry.Registry(database: Database, universe: DimensionUniverse, *, opaque: Type[OpaqueTableStorageManager], dimensions: Type[DimensionRecordStorageManager], collections: Type[CollectionManager], create: bool = False)¶ Bases:
objectRegistry interface.
Parameters: - config :
ButlerConfig,RegistryConfig,Configorstr Registry configuration
Attributes Summary
defaultConfigFilePath to configuration defaults. dimensionsThe universe of all dimensions known to the registry ( DimensionUniverse).Methods Summary
associate(collection, refs, *, recursive)Add existing Datasets to a collection, implicitly creating the collection if it does not already exist. attachComponent(name, parent, component)Attach a component to a dataset. deleteOpaqueData(tableName, **where)Remove records from an opaque table. disassociate(collection, refs, *, recursive)Remove existing Datasets from a collection. expandDataId(dataId, Mapping[str, Any], …)Expand a dimension-based data ID to include additional information. fetchOpaqueData(tableName, **where)Retrieve records from an opaque table. findDataset(datasetType, str], dataId, …)Find a dataset given its DatasetTypeand data ID.fromConfig(config, RegistryConfig, Config, …)Create Registrysubclass instance fromconfig.getCollectionChain(parent)Return the child collections in a CHAINEDcollection.getCollectionType(name)Return an enumeration value indicating the type of the given collection. getDataset(id, datasetType, dataId)Retrieve a Dataset entry. getDatasetLocations(ref)Retrieve datastore locations for a given dataset. getDatasetType(name)Get the DatasetType.insertDatasetLocations(datastoreName, refs)Record that a datastore holds the given datasets. insertDatasets(datasetType, str], dataIds, …)Insert one or more datasets into the RegistryinsertDimensionData(element, str], *data, …)Insert one or more dimension records into the database. insertOpaqueData(tableName, *data)Insert records into an opaque table. isWriteable()Return Trueif this registry allows write operations, andFalseotherwise.makeQueryBuilder(summary)Return a QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable viaRegistryinterfaces.queryCollections(expression, datasetType, …)Iterate over the collections whose names match an expression. queryDatasetTypes(expression)Iterate over the dataset types whose names match an expression. queryDatasets(datasetType, *, collections, …)Query for and iterate over dataset references matching user-provided criteria. queryDimensions(dimensions, str]], …)Query for and iterate over data IDs matching user-provided criteria. registerCollection(name, type)Add a new collection if one with the given name does not exist. registerDatasetType(datasetType)Add a new DatasetTypeto the Registry.registerOpaqueTable(tableName, spec)Add an opaque (to the Registry) table for use by aDatastoreor other data repository client.registerRun(name)Add a new run if one with the given name does not exist. removeDataset(ref)Remove a dataset from the Registry. removeDatasetLocation(datastoreName, ref)Remove datastore location associated with this dataset. setCollectionChain(parent, children)Define or redefine a CHAINEDcollection.transaction()Return a context manager that represents a transaction. Attributes Documentation
-
defaultConfigFile= None¶ Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified.
-
dimensions¶ The universe of all dimensions known to the registry (
DimensionUniverse).
Methods Documentation
-
associate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], *, recursive: bool = True)¶ Add existing Datasets to a collection, implicitly creating the collection if it does not already exist.
If a DatasetRef with the same exact
dataset_idis already in a collection nothing is changed. If aDatasetRefwith the sameDatasetType1and dimension values but with differentdataset_idexists in the collection,ValueErroris raised.Parameters: - collection :
str Indicates the collection the Datasets should be associated with.
- refs : iterable of
DatasetRef An iterable of resolved
DatasetRefinstances that already exist in thisRegistry.- recursive :
bool, optional If
True, associate all component datasets as well. Note that this only associates components that are actually included in the givenDatasetRefinstances, which may not be the same as those in the database (especially if they were obtained fromqueryDatasets, which does not populateDatasetRef.components).
Raises: - ConflictingDefinitionError
If a Dataset with the given
DatasetRefalready exists in the given collection.- AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).- MissingCollectionError
Raised if
collectiondoes not exist in the registry.- TypeError
Raise adding new datasets to the given
collectionis not allowed.
- collection :
-
attachComponent(name: str, parent: lsst.daf.butler.core.datasets.ref.DatasetRef, component: lsst.daf.butler.core.datasets.ref.DatasetRef)¶ Attach a component to a dataset.
Parameters: - name :
str Name of the component.
- parent :
DatasetRef A reference to the parent dataset. Will be updated to reference the component.
- component :
DatasetRef A reference to the component dataset.
Raises: - AmbiguousDatasetError
Raised if
parent.idorcomponent.idisNone.
- name :
-
deleteOpaqueData(tableName: str, **where)¶ Remove records from an opaque table.
Parameters: - tableName :
str Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable.- where
Additional keyword arguments are interpreted as equality constraints that restrict the deleted rows (combined with AND); keyword arguments are column names and values are the values they must have.
- tableName :
-
disassociate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], *, recursive: bool = True)¶ Remove existing Datasets from a collection.
collectionandrefcombinations that are not currently associated are silently ignored.Parameters: - collection :
str The collection the Datasets should no longer be associated with.
- refs : iterable of
DatasetRef An iterable of resolved
DatasetRefinstances that already exist in thisRegistry.- recursive :
bool, optional If
True, disassociate all component datasets as well. Note that this only disassociates components that are actually included in the givenDatasetRefinstances, which may not be the same as those in the database (especially if they were obtained fromqueryDatasets, which does not populateDatasetRef.components).
Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).- MissingCollectionError
Raised if
collectiondoes not exist in the registry.- TypeError
Raise adding new datasets to the given
collectionis not allowed.
- collection :
-
expandDataId(dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions.graph.DimensionGraph] = None, records: Optional[Mapping[lsst.daf.butler.core.dimensions.elements.DimensionElement, lsst.daf.butler.core.dimensions.records.DimensionRecord]] = None, **kwds)¶ Expand a dimension-based data ID to include additional information.
Parameters: - dataId :
DataCoordinateordict, optional Data ID to be expanded; augmented and overridden by
kwds.- graph :
DimensionGraph, optional Set of dimensions for the expanded ID. If
None, the dimensions will be inferred from the keys ofdataIdandkwds. Dimensions that are indataIdorkwdsbut not ingraphare silently ignored, providing a way to extract and expand a subset of a data ID.- records : mapping [
DimensionElement,DimensionRecord], optional Dimension record data to use before querying the database for that data.
- **kwds
Additional keywords are treated like additional key-value pairs for
dataId, extending and overriding
Returns: - expanded :
ExpandedDataCoordinate A data ID that includes full metadata for all of the dimensions it identifieds.
- dataId :
-
fetchOpaqueData(tableName: str, **where) → Iterator[dict]¶ Retrieve records from an opaque table.
Parameters: - tableName :
str Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable.- where
Additional keyword arguments are interpreted as equality constraints that restrict the returned rows (combined with AND); keyword arguments are column names and values are the values they must have.
Yields: - row :
dict A dictionary representing a single result row.
- tableName :
-
findDataset(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collections: Any, **kwds) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Find a dataset given its
DatasetTypeand data ID.This can be used to obtain a
DatasetRefthat permits the dataset to be read from aDatastore.Parameters: - datasetType :
DatasetTypeorstr A
DatasetTypeor the name of one.- dataId :
dictorDataCoordinate, optional A
dict-like object containing theDimensionlinks that identify the dataset within a collection.- collections
An expression that fully or partially identifies the collections to search for the dataset, such as a
str,re.Pattern, or iterable thereof.can be used to return all collections. See Collection expressions for more information.- **kwds
Additional keyword arguments passed to
DataCoordinate.standardizeto convertdataIdto a trueDataCoordinateor augment an existing one.
Returns: - ref :
DatasetRef A reference to the dataset, or
Noneif no matching Dataset was found.
Raises: - LookupError
Raised if one or more data ID keys are missing.
- MissingCollectionError
Raised if any of
collectionsdoes not exist in the registry.
- datasetType :
-
classmethod
fromConfig(config: Union[ButlerConfig, RegistryConfig, Config, str], create: bool = False, butlerRoot: Optional[str] = None, writeable: bool = True) → Registry¶ Create
Registrysubclass instance fromconfig.Uses
registry.clsfromconfigto determine which subclass to instantiate.Parameters: - config :
ButlerConfig,RegistryConfig,Configorstr Registry configuration
- create :
bool, optional Assume empty Registry and create a new one.
- butlerRoot :
str, optional Path to the repository root this
Registrywill manage.- writeable :
bool, optional If
True(default) create a read-write connection to the database.
Returns: - config :
-
getCollectionChain(parent: str) → lsst.daf.butler.registry.wildcards.CollectionSearch¶ Return the child collections in a
CHAINEDcollection.Parameters: - parent :
str Name of the chained collection. Must have already been added via a call to
Registry.registerCollection.
Returns: - children :
CollectionSearch An object that defines the search path of the collection. See Collection expressions for more information.
Raises: - parent :
-
getCollectionType(name: str) → lsst.daf.butler.registry._collectionType.CollectionType¶ Return an enumeration value indicating the type of the given collection.
Parameters: - name :
str The name of the collection.
Returns: - type :
CollectionType Enum value indicating the type of this collection.
Raises: - MissingCollectionError
Raised if no collection with the given name exists.
- name :
-
getDataset(id: int, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, dataId: Optional[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate] = None) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Retrieve a Dataset entry.
Parameters: - id :
int The unique identifier for the Dataset.
- datasetType :
DatasetType, optional The
DatasetTypeof the dataset to retrieve. This is used to short-circuit retrieving theDatasetType, so if provided, the caller is guaranteeing that it is what would have been retrieved.- dataId :
DataCoordinate, optional A
Dimension-based identifier for the dataset within a collection, possibly containing additional metadata. This is used to short-circuit retrieving the dataId, so if provided, the caller is guaranteeing that it is what would have been retrieved.
Returns: - ref :
DatasetRef A ref to the Dataset, or
Noneif no matching Dataset was found.
- id :
-
getDatasetLocations(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Set[str]¶ Retrieve datastore locations for a given dataset.
Typically used by
Datastore.Parameters: - ref :
DatasetRef A reference to the dataset for which to retrieve storage information.
Returns: Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.
- ref :
-
getDatasetType(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶ Get the
DatasetType.Parameters: - name :
str Name of the type.
Returns: - type :
DatasetType The
DatasetTypeassociated with the given name.
Raises: - KeyError
Requested named DatasetType could not be found in registry.
- name :
-
insertDatasetLocations(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Record that a datastore holds the given datasets.
Typically used by
Datastore.Parameters: Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs).
-
insertDatasets(datasetType: Union[DatasetType, str], dataIds: Iterable[DataId], run: str, *, producer: Optional[Quantum] = None, recursive: bool = False) → List[DatasetRef]¶ Insert one or more datasets into the
RegistryThis always adds new datasets; to associate existing datasets with a new collection, use
associate.Parameters: - datasetType :
DatasetTypeorstr A
DatasetTypeor the name of one.- dataIds :
IterableofdictorDataCoordinate Dimension-based identifiers for the new datasets.
- run :
str The name of the run that produced the datasets.
- producer :
Quantum Unit of work that produced the datasets. May be
Noneto store no provenance information, but if present theQuantummust already have been added to the Registry.- recursive :
bool If True, recursively add datasets and attach entries for component datasets as well.
Returns: - refs :
listofDatasetRef Resolved
DatasetRefinstances for all given data IDs (in the same order).
Raises: - ConflictingDefinitionError
If a dataset with the same dataset type and data ID as one of those given already exists in the given collection.
- MissingCollectionError
Raised if
rundoes not exist in the registry.
- datasetType :
-
insertDimensionData(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], *data, conform: bool = True)¶ Insert one or more dimension records into the database.
Parameters: - element :
DimensionElementorstr The
DimensionElementor name thereof that identifies the table records will be inserted into.- data :
dictorDimensionRecord(variadic) One or more records to insert.
- conform :
bool, optional If
False(Trueis default) perform no checking or conversions, and assume thatelementis aDimensionElementinstance anddatais a one or moreDimensionRecordinstances of the appropriate subclass.
- element :
-
insertOpaqueData(tableName: str, *data)¶ Insert records into an opaque table.
Parameters: - tableName :
str Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable.- data
Each additional positional argument is a dictionary that represents a single row to be added.
- tableName :
-
makeQueryBuilder(summary: lsst.daf.butler.registry.queries._structs.QuerySummary) → lsst.daf.butler.registry.queries._builder.QueryBuilder¶ Return a
QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable viaRegistryinterfaces.This is an advanced interface; downstream code should prefer
Registry.queryDimensionsandRegistry.queryDatasetswhenever those are sufficient.Parameters: - summary :
QuerySummary Object describing and categorizing the full set of dimensions that will be included in the query.
Returns: - builder :
QueryBuilder Object that can be used to construct and perform advanced queries.
- summary :
-
queryCollections(expression: Any = Ellipsis, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, collectionType: Optional[lsst.daf.butler.registry._collectionType.CollectionType] = None, flattenChains: bool = False, includeChains: Optional[bool] = None) → Iterator[str]¶ Iterate over the collections whose names match an expression.
Parameters: - expression :
Any, optional An expression that fully or partially identifies the collections to return, such as a
str,re.Pattern, or iterable thereof.can be used to return all collections, and is the default. See Collection expressions for more information.- datasetType :
DatasetType, optional If provided, only yield collections that should be searched for this dataset type according to
expression. If this is not provided, any dataset type restrictions inexpressionare ignored.- collectionType :
CollectionType, optional If provided, only yield collections of this type.
- flattenChains :
bool, optional If
True(Falseis default), recursively yield the child collections of matchingCHAINEDcollections.- includeChains :
bool, optional If
True, yield records for matchingCHAINEDcollections. Default is the opposite offlattenChains: include either CHAINED collections or their children, but not both.
Yields: - collection :
str The name of a collection that matches
expression.
- expression :
-
queryDatasetTypes(expression: Any = Ellipsis) → Iterator[lsst.daf.butler.core.datasets.type.DatasetType]¶ Iterate over the dataset types whose names match an expression.
Parameters: - expression :
Any, optional An expression that fully or partially identifies the dataset types to return, such as a
str,re.Pattern, or iterable thereof.can be used to return all dataset types, and is the default. See DatasetType expressions for more information.
Yields: - datasetType :
DatasetType A
DatasetTypeinstance whose name matchesexpression.
- expression :
-
queryDatasets(datasetType: Any, *, collections: Any, dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, deduplicate: bool = False, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Query for and iterate over dataset references matching user-provided criteria.
Parameters: - datasetType
An expression that fully or partially identifies the dataset types to be queried. Allowed types include
DatasetType,str,re.Pattern, and iterables thereof. The special valuecan be used to query all dataset types. See DatasetType expressions for more information.- collections
An expression that fully or partially identifies the collections to search for datasets, such as a
str,re.Pattern, or iterable thereof.can be used to return all collections. See Collection expressions for more information.- dimensions :
IterableofDimensionorstr Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the
dataIdorwherearguments.- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- where :
str, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information.
- deduplicate :
bool, optional If
True(Falseis default), for each result data ID, only yield oneDatasetRefof eachDatasetType, from the first collection in which a dataset of that dataset type appears (according to the order ofcollectionspassed in). IfTrue,collectionsmust not contain regular expressions and may not be.- expand :
bool, optional If
True(default) attachExpandedDataCoordinateinstead of minimalDataCoordinatebase-class instances.- kwds
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Yields: - ref :
DatasetRef Dataset references matching the given query criteria. These are grouped by
DatasetTypeif the query evaluates to multiple dataset types, but order is otherwise unspecified.
Raises: - TypeError
Raised when the arguments are incompatible, such as when a collection wildcard is passed when
deduplicateisTrue.
Notes
When multiple dataset types are queried in a single call, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use
queryDimensionsto first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls toqueryDatasetswith the returned data IDs passed as constraints.
-
queryDimensions(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]], lsst.daf.butler.core.dimensions.elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate]¶ Query for and iterate over data IDs matching user-provided criteria.
Parameters: - dimensions :
Dimensionorstr, or iterable thereof The dimensions of the data IDs to yield, as either
Dimensioninstances orstr. Will be automatically expanded to a completeDimensionGraph.- dataId :
dictorDataCoordinate, optional A data ID whose key-value pairs are used as equality constraints in the query.
- datasets :
Any, optional An expression that fully or partially identifies dataset types that should constrain the yielded data IDs. For example, including “raw” here would constrain the yielded
instrument,exposure,detector, andphysical_filtervalues to only those for which at least one “raw” dataset exists incollections. Allowed types includeDatasetType,str,re.Pattern, and iterables thereof. Unlike other dataset type expressions,is not permitted - it doesn’t make sense to constrain data IDs on the existence of all datasets. See DatasetType expressions for more information.- collections: `Any`, optional
An expression that fully or partially identifies the collections to search for datasets, such as a
str,re.Pattern, or iterable thereof.can be used to return all collections. Must be provided ifdatasetsis, and is ignored if it is not. See Collection expressions for more information.- where :
str, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information.
- expand :
bool, optional If
True(default) yieldExpandedDataCoordinateinstead of minimalDataCoordinatebase-class instances.- kwds
Additional keyword arguments are forwarded to
DataCoordinate.standardizewhen processing thedataIdargument (and may be used to provide a constraining data ID even when thedataIdargument isNone).
Yields: - dataId :
DataCoordinate Data IDs matching the given query parameters. Order is unspecified.
- dimensions :
-
registerCollection(name: str, type: lsst.daf.butler.registry._collectionType.CollectionType = <CollectionType.TAGGED: 2>)¶ Add a new collection if one with the given name does not exist.
Parameters: - name :
str The name of the collection to create.
- type :
CollectionType Enum value indicating the type of collection to create.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- name :
-
registerDatasetType(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶ Add a new
DatasetTypeto the Registry.It is not an error to register the same
DatasetTypetwice.Parameters: - datasetType :
DatasetType The
DatasetTypeto be added.
Returns: Raises: - ValueError
Raised if the dimensions or storage class are invalid.
- ConflictingDefinitionError
Raised if this DatasetType is already registered with a different definition.
- datasetType :
-
registerOpaqueTable(tableName: str, spec: lsst.daf.butler.core.ddl.TableSpec)¶ Add an opaque (to the
Registry) table for use by aDatastoreor other data repository client.Opaque table records can be added via
insertOpaqueData, retrieved viafetchOpaqueData, and removed viadeleteOpaqueData.Parameters: - tableName :
str Logical name of the opaque table. This may differ from the actual name used in the database by a prefix and/or suffix.
- spec :
ddl.TableSpec Specification for the table to be added.
- tableName :
-
registerRun(name: str)¶ Add a new run if one with the given name does not exist.
Parameters: - name :
str The name of the run to create.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- name :
-
removeDataset(ref: lsst.daf.butler.core.datasets.ref.DatasetRef)¶ Remove a dataset from the Registry.
The dataset and all components will be removed unconditionally from all collections, and any associated
Quantumrecords will also be removed.Datastorerecords will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.Parameters: - ref :
DatasetRef Reference to the dataset to be removed. Must include a valid
idattribute, and should be considered invalidated upon return.
Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.- OrphanedRecordError
Raised if the dataset is still present in any
Datastore.
- ref :
-
removeDatasetLocation(datastoreName, ref)¶ Remove datastore location associated with this dataset.
Typically used by
Datastorewhen a dataset is removed.Parameters: - datastoreName :
str Name of this
Datastore.- ref :
DatasetRef A reference to the dataset for which information is to be removed.
Raises: - AmbiguousDatasetError
Raised if
ref.idisNone.
- datastoreName :
-
setCollectionChain(parent: str, children: Any)¶ Define or redefine a
CHAINEDcollection.Parameters: - parent :
str Name of the chained collection. Must have already been added via a call to
Registry.registerCollection.- children :
Any An expression defining an ordered search of child collections, generally an iterable of
str. Restrictions on the dataset types to be searched can also be included, by passing mapping or an iterable containing tuples; see Collection expressions for more information.
Raises: - parent :
-
transaction()¶ Return a context manager that represents a transaction.
- config :