Registry¶
-
class
lsst.daf.butler.
Registry
(database: Database, universe: DimensionUniverse, *, opaque: Type[OpaqueTableStorageManager], dimensions: Type[DimensionRecordStorageManager], collections: Type[CollectionManager], create: bool = False)¶ Bases:
object
Registry interface.
Parameters: - config :
ButlerConfig
,RegistryConfig
,Config
orstr
Registry configuration
Attributes Summary
defaultConfigFile
Path to configuration defaults. dimensions
The universe of all dimensions known to the registry ( DimensionUniverse
).Methods Summary
associate
(collection, refs, *, recursive)Add existing Datasets to a collection, implicitly creating the collection if it does not already exist. attachComponent
(name, parent, component)Attach a component to a dataset. canDeleteDatasetLocations
(datastoreName, refs)Record that a datastore can delete this dataset checkDatasetLocations
(datastoreName, refs)Check which refs are listed for this datastore. deleteOpaqueData
(tableName, **where)Remove records from an opaque table. disassociate
(collection, refs, *, recursive)Remove existing Datasets from a collection. emptyDatasetLocationsTrash
(datastoreName, refs)Remove datastore location associated with these datasets from trash. expandDataId
(dataId, Mapping[str, Any], …)Expand a dimension-based data ID to include additional information. fetchOpaqueData
(tableName, **where)Retrieve records from an opaque table. findDataset
(datasetType, str], dataId, …)Find a dataset given its DatasetType
and data ID.fromConfig
(config, RegistryConfig, Config, …)Create Registry
subclass instance fromconfig
.getCollectionChain
(parent)Return the child collections in a CHAINED
collection.getCollectionType
(name)Return an enumeration value indicating the type of the given collection. getDataset
(id, datasetType, dataId)Retrieve a Dataset entry. getDatasetLocations
(ref)Retrieve datastore locations for a given dataset. getDatasetType
(name)Get the DatasetType
.getTrashedDatasets
(datastoreName)Retrieve all the dataset ref IDs that are in the trash associated with the specified datastore. insertDatasetLocations
(datastoreName, refs)Record that a datastore holds the given datasets. insertDatasets
(datasetType, str], dataIds, …)Insert one or more datasets into the Registry
insertDimensionData
(element, str], *data, …)Insert one or more dimension records into the database. insertOpaqueData
(tableName, *data)Insert records into an opaque table. isWriteable
()Return True
if this registry allows write operations, andFalse
otherwise.makeQueryBuilder
(summary)Return a QueryBuilder
instance capable of constructing and managing more complex queries than those obtainable viaRegistry
interfaces.moveDatasetLocationToTrash
(datastoreName, refs)Move the dataset location information to trash. queryCollections
(expression, datasetType, …)Iterate over the collections whose names match an expression. queryDatasetTypes
(expression)Iterate over the dataset types whose names match an expression. queryDatasets
(datasetType, *, collections, …)Query for and iterate over dataset references matching user-provided criteria. queryDimensions
(dimensions, str]], …)Query for and iterate over data IDs matching user-provided criteria. registerCollection
(name, type)Add a new collection if one with the given name does not exist. registerDatasetType
(datasetType)Add a new DatasetType
to the Registry.registerOpaqueTable
(tableName, spec)Add an opaque (to the Registry
) table for use by aDatastore
or other data repository client.registerRun
(name)Add a new run if one with the given name does not exist. relateDataIds
(a, Mapping[str, Any]], b, …)Compare the keys and values of a pair of data IDs for consistency. removeDataset
(ref)Remove a dataset from the Registry. removeDatasetLocation
(datastoreName, refs)Remove datastore location associated with this dataset. setCollectionChain
(parent, children)Define or redefine a CHAINED
collection.syncDimensionData
(element, str], row, …)Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does. transaction
()Return a context manager that represents a transaction. Attributes Documentation
-
defaultConfigFile
= None¶ Path to configuration defaults. Relative to $DAF_BUTLER_DIR/config or absolute path. Can be None if no defaults specified.
-
dimensions
¶ The universe of all dimensions known to the registry (
DimensionUniverse
).
Methods Documentation
-
associate
(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], *, recursive: bool = True)¶ Add existing Datasets to a collection, implicitly creating the collection if it does not already exist.
If a DatasetRef with the same exact
dataset_id
is already in a collection nothing is changed. If aDatasetRef
with the sameDatasetType1
and dimension values but with differentdataset_id
exists in the collection,ValueError
is raised.Parameters: - collection :
str
Indicates the collection the Datasets should be associated with.
- refs : iterable of
DatasetRef
An iterable of resolved
DatasetRef
instances that already exist in thisRegistry
.- recursive :
bool
, optional If
True
, associate all component datasets as well. Note that this only associates components that are actually included in the givenDatasetRef
instances, which may not be the same as those in the database (especially if they were obtained fromqueryDatasets
, which does not populateDatasetRef.components
).
Raises: - ConflictingDefinitionError
If a Dataset with the given
DatasetRef
already exists in the given collection.- AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs)
.- MissingCollectionError
Raised if
collection
does not exist in the registry.- TypeError
Raise adding new datasets to the given
collection
is not allowed.
- collection :
-
attachComponent
(name: str, parent: lsst.daf.butler.core.datasets.ref.DatasetRef, component: lsst.daf.butler.core.datasets.ref.DatasetRef)¶ Attach a component to a dataset.
Parameters: - name :
str
Name of the component.
- parent :
DatasetRef
A reference to the parent dataset. Will be updated to reference the component.
- component :
DatasetRef
A reference to the component dataset.
Raises: - AmbiguousDatasetError
Raised if
parent.id
orcomponent.id
isNone
.
- name :
-
canDeleteDatasetLocations
(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Record that a datastore can delete this dataset
Parameters: - datastoreName :
str
Name of the datastore holding these datasets.
- refs :
Iterable
ofDatasetRef
References to the datasets.
Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs)
.
- datastoreName :
-
checkDatasetLocations
(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → List[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Check which refs are listed for this datastore.
Parameters: - datastoreName :
str
Name of the datastore holding these datasets.
- refs :
Iterable
ofDatasetRef
References to the datasets.
Returns: - present :
list
ofDatasetRef
All the
DatasetRef
that are listed.
- datastoreName :
-
deleteOpaqueData
(tableName: str, **where)¶ Remove records from an opaque table.
Parameters: - tableName :
str
Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable
.- where
Additional keyword arguments are interpreted as equality constraints that restrict the deleted rows (combined with AND); keyword arguments are column names and values are the values they must have.
- tableName :
-
disassociate
(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], *, recursive: bool = True)¶ Remove existing Datasets from a collection.
collection
andref
combinations that are not currently associated are silently ignored.Parameters: - collection :
str
The collection the Datasets should no longer be associated with.
- refs : iterable of
DatasetRef
An iterable of resolved
DatasetRef
instances that already exist in thisRegistry
.- recursive :
bool
, optional If
True
, disassociate all component datasets as well. Note that this only disassociates components that are actually included in the givenDatasetRef
instances, which may not be the same as those in the database (especially if they were obtained fromqueryDatasets
, which does not populateDatasetRef.components
).
Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs)
.- MissingCollectionError
Raised if
collection
does not exist in the registry.- TypeError
Raise adding new datasets to the given
collection
is not allowed.
- collection :
-
emptyDatasetLocationsTrash
(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.FakeDatasetRef]) → None¶ Remove datastore location associated with these datasets from trash.
Typically used by
Datastore
when a dataset is removed.Parameters: - datastoreName :
str
Name of this
Datastore
.- refs : iterable of
FakeDatasetRef
The dataset IDs to be removed.
Raises: - AmbiguousDatasetError
Raised if
ref.id
isNone
.
- datastoreName :
-
expandDataId
(dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions.graph.DimensionGraph] = None, records: Optional[Mapping[lsst.daf.butler.core.dimensions.elements.DimensionElement, lsst.daf.butler.core.dimensions.records.DimensionRecord]] = None, **kwds)¶ Expand a dimension-based data ID to include additional information.
Parameters: - dataId :
DataCoordinate
ordict
, optional Data ID to be expanded; augmented and overridden by
kwds
.- graph :
DimensionGraph
, optional Set of dimensions for the expanded ID. If
None
, the dimensions will be inferred from the keys ofdataId
andkwds
. Dimensions that are indataId
orkwds
but not ingraph
are silently ignored, providing a way to extract and expand a subset of a data ID.- records : mapping [
DimensionElement
,DimensionRecord
], optional Dimension record data to use before querying the database for that data.
- **kwds
Additional keywords are treated like additional key-value pairs for
dataId
, extending and overriding
Returns: - expanded :
ExpandedDataCoordinate
A data ID that includes full metadata for all of the dimensions it identifieds.
- dataId :
-
fetchOpaqueData
(tableName: str, **where) → Iterator[dict]¶ Retrieve records from an opaque table.
Parameters: - tableName :
str
Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable
.- where
Additional keyword arguments are interpreted as equality constraints that restrict the returned rows (combined with AND); keyword arguments are column names and values are the values they must have.
Yields: - row :
dict
A dictionary representing a single result row.
- tableName :
-
findDataset
(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collections: Any, **kwds) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Find a dataset given its
DatasetType
and data ID.This can be used to obtain a
DatasetRef
that permits the dataset to be read from aDatastore
.Parameters: - datasetType :
DatasetType
orstr
A
DatasetType
or the name of one.- dataId :
dict
orDataCoordinate
, optional A
dict
-like object containing theDimension
links that identify the dataset within a collection.- collections
An expression that fully or partially identifies the collections to search for the dataset, such as a
str
,re.Pattern
, or iterable thereof.can be used to return all collections. See Collection expressions for more information.
- **kwds
Additional keyword arguments passed to
DataCoordinate.standardize
to convertdataId
to a trueDataCoordinate
or augment an existing one.
Returns: - ref :
DatasetRef
A reference to the dataset, or
None
if no matching Dataset was found.
Raises: - LookupError
Raised if one or more data ID keys are missing.
- MissingCollectionError
Raised if any of
collections
does not exist in the registry.
- datasetType :
-
classmethod
fromConfig
(config: Union[ButlerConfig, RegistryConfig, Config, str], create: bool = False, butlerRoot: Optional[str] = None, writeable: bool = True) → Registry¶ Create
Registry
subclass instance fromconfig
.Uses
registry.cls
fromconfig
to determine which subclass to instantiate.Parameters: - config :
ButlerConfig
,RegistryConfig
,Config
orstr
Registry configuration
- create :
bool
, optional Assume empty Registry and create a new one.
- butlerRoot :
str
, optional Path to the repository root this
Registry
will manage.- writeable :
bool
, optional If
True
(default) create a read-write connection to the database.
Returns: - config :
-
getCollectionChain
(parent: str) → lsst.daf.butler.registry.wildcards.CollectionSearch¶ Return the child collections in a
CHAINED
collection.Parameters: - parent :
str
Name of the chained collection. Must have already been added via a call to
Registry.registerCollection
.
Returns: - children :
CollectionSearch
An object that defines the search path of the collection. See Collection expressions for more information.
Raises: - parent :
-
getCollectionType
(name: str) → lsst.daf.butler.registry._collectionType.CollectionType¶ Return an enumeration value indicating the type of the given collection.
Parameters: - name :
str
The name of the collection.
Returns: - type :
CollectionType
Enum value indicating the type of this collection.
Raises: - MissingCollectionError
Raised if no collection with the given name exists.
- name :
-
getDataset
(id: int, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, dataId: Optional[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate] = None) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Retrieve a Dataset entry.
Parameters: - id :
int
The unique identifier for the Dataset.
- datasetType :
DatasetType
, optional The
DatasetType
of the dataset to retrieve. This is used to short-circuit retrieving theDatasetType
, so if provided, the caller is guaranteeing that it is what would have been retrieved.- dataId :
DataCoordinate
, optional A
Dimension
-based identifier for the dataset within a collection, possibly containing additional metadata. This is used to short-circuit retrieving the dataId, so if provided, the caller is guaranteeing that it is what would have been retrieved.
Returns: - ref :
DatasetRef
A ref to the Dataset, or
None
if no matching Dataset was found.
- id :
-
getDatasetLocations
(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Set[str]¶ Retrieve datastore locations for a given dataset.
Typically used by
Datastore
.Parameters: - ref :
DatasetRef
A reference to the dataset for which to retrieve storage information.
Returns: Raises: - AmbiguousDatasetError
Raised if
ref.id
isNone
.
- ref :
-
getDatasetType
(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶ Get the
DatasetType
.Parameters: - name :
str
Name of the type.
Returns: - type :
DatasetType
The
DatasetType
associated with the given name.
Raises: - KeyError
Requested named DatasetType could not be found in registry.
- name :
-
getTrashedDatasets
(datastoreName: str) → Set[lsst.daf.butler.core.datasets.ref.FakeDatasetRef]¶ Retrieve all the dataset ref IDs that are in the trash associated with the specified datastore.
Parameters: - datastoreName :
str
The relevant datastore name to use.
Returns: - ids :
set
ofFakeDatasetRef
The IDs of datasets that can be safely removed from this datastore. Can be empty.
- datastoreName :
-
insertDatasetLocations
(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Record that a datastore holds the given datasets.
Typically used by
Datastore
.Parameters: - datastoreName :
str
Name of the datastore holding these datasets.
- refs :
Iterable
ofDatasetRef
References to the datasets.
Raises: - AmbiguousDatasetError
Raised if
any(ref.id is None for ref in refs)
.
- datastoreName :
-
insertDatasets
(datasetType: Union[DatasetType, str], dataIds: Iterable[DataId], run: str, *, producer: Optional[Quantum] = None, recursive: bool = False) → List[DatasetRef]¶ Insert one or more datasets into the
Registry
This always adds new datasets; to associate existing datasets with a new collection, use
associate
.Parameters: - datasetType :
DatasetType
orstr
A
DatasetType
or the name of one.- dataIds :
Iterable
ofdict
orDataCoordinate
Dimension-based identifiers for the new datasets.
- run :
str
The name of the run that produced the datasets.
- producer :
Quantum
Unit of work that produced the datasets. May be
None
to store no provenance information, but if present theQuantum
must already have been added to the Registry.- recursive :
bool
If True, recursively add datasets and attach entries for component datasets as well.
Returns: - refs :
list
ofDatasetRef
Resolved
DatasetRef
instances for all given data IDs (in the same order).
Raises: - ConflictingDefinitionError
If a dataset with the same dataset type and data ID as one of those given already exists in the given collection.
- MissingCollectionError
Raised if
run
does not exist in the registry.
- datasetType :
-
insertDimensionData
(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], *data, conform: bool = True)¶ Insert one or more dimension records into the database.
Parameters: - element :
DimensionElement
orstr
The
DimensionElement
or name thereof that identifies the table records will be inserted into.- data :
dict
orDimensionRecord
(variadic) One or more records to insert.
- conform :
bool
, optional If
False
(True
is default) perform no checking or conversions, and assume thatelement
is aDimensionElement
instance anddata
is a one or moreDimensionRecord
instances of the appropriate subclass.
- element :
-
insertOpaqueData
(tableName: str, *data)¶ Insert records into an opaque table.
Parameters: - tableName :
str
Logical name of the opaque table. Must match the name used in a previous call to
registerOpaqueTable
.- data
Each additional positional argument is a dictionary that represents a single row to be added.
- tableName :
-
makeQueryBuilder
(summary: lsst.daf.butler.registry.queries._structs.QuerySummary) → lsst.daf.butler.registry.queries._builder.QueryBuilder¶ Return a
QueryBuilder
instance capable of constructing and managing more complex queries than those obtainable viaRegistry
interfaces.This is an advanced interface; downstream code should prefer
Registry.queryDimensions
andRegistry.queryDatasets
whenever those are sufficient.Parameters: - summary :
QuerySummary
Object describing and categorizing the full set of dimensions that will be included in the query.
Returns: - builder :
QueryBuilder
Object that can be used to construct and perform advanced queries.
- summary :
-
moveDatasetLocationToTrash
(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef])¶ Move the dataset location information to trash.
Parameters: - datastoreName :
str
Name of the datastore holding these datasets.
- refs :
Iterable
ofDatasetRef
References to the datasets.
- datastoreName :
-
queryCollections
(expression: Any = Ellipsis, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, collectionType: Optional[lsst.daf.butler.registry._collectionType.CollectionType] = None, flattenChains: bool = False, includeChains: Optional[bool] = None) → Iterator[str]¶ Iterate over the collections whose names match an expression.
Parameters: - expression :
Any
, optional An expression that fully or partially identifies the collections to return, such as a
str
,re.Pattern
, or iterable thereof.can be used to return all collections, and is the default. See Collection expressions for more information.
- datasetType :
DatasetType
, optional If provided, only yield collections that should be searched for this dataset type according to
expression
. If this is not provided, any dataset type restrictions inexpression
are ignored.- collectionType :
CollectionType
, optional If provided, only yield collections of this type.
- flattenChains :
bool
, optional If
True
(False
is default), recursively yield the child collections of matchingCHAINED
collections.- includeChains :
bool
, optional If
True
, yield records for matchingCHAINED
collections. Default is the opposite offlattenChains
: include either CHAINED collections or their children, but not both.
Yields: - collection :
str
The name of a collection that matches
expression
.
- expression :
-
queryDatasetTypes
(expression: Any = Ellipsis) → Iterator[lsst.daf.butler.core.datasets.type.DatasetType]¶ Iterate over the dataset types whose names match an expression.
Parameters: - expression :
Any
, optional An expression that fully or partially identifies the dataset types to return, such as a
str
,re.Pattern
, or iterable thereof.can be used to return all dataset types, and is the default. See DatasetType expressions for more information.
Yields: - datasetType :
DatasetType
A
DatasetType
instance whose name matchesexpression
.
- expression :
-
queryDatasets
(datasetType: Any, *, collections: Any, dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, deduplicate: bool = False, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.datasets.ref.DatasetRef]¶ Query for and iterate over dataset references matching user-provided criteria.
Parameters: - datasetType
An expression that fully or partially identifies the dataset types to be queried. Allowed types include
DatasetType
,str
,re.Pattern
, and iterables thereof. The special valuecan be used to query all dataset types. See DatasetType expressions for more information.
- collections
An expression that fully or partially identifies the collections to search for datasets, such as a
str
,re.Pattern
, or iterable thereof.can be used to return all collections. See Collection expressions for more information.
- dimensions :
Iterable
ofDimension
orstr
Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the
dataId
orwhere
arguments.- dataId :
dict
orDataCoordinate
, optional A data ID whose key-value pairs are used as equality constraints in the query.
- where :
str
, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information.
- deduplicate :
bool
, optional If
True
(False
is default), for each result data ID, only yield oneDatasetRef
of eachDatasetType
, from the first collection in which a dataset of that dataset type appears (according to the order ofcollections
passed in). IfTrue
,collections
must not contain regular expressions and may not be.
- expand :
bool
, optional If
True
(default) attachExpandedDataCoordinate
instead of minimalDataCoordinate
base-class instances.- kwds
Additional keyword arguments are forwarded to
DataCoordinate.standardize
when processing thedataId
argument (and may be used to provide a constraining data ID even when thedataId
argument isNone
).
Yields: - ref :
DatasetRef
Dataset references matching the given query criteria. These are grouped by
DatasetType
if the query evaluates to multiple dataset types, but order is otherwise unspecified.
Raises: - TypeError
Raised when the arguments are incompatible, such as when a collection wildcard is passed when
deduplicate
isTrue
.
Notes
When multiple dataset types are queried in a single call, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use
queryDimensions
to first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls toqueryDatasets
with the returned data IDs passed as constraints.
-
queryDimensions
(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions.elements.Dimension, str]], lsst.daf.butler.core.dimensions.elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, expand: bool = True, **kwds) → Iterator[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate]¶ Query for and iterate over data IDs matching user-provided criteria.
Parameters: - dimensions :
Dimension
orstr
, or iterable thereof The dimensions of the data IDs to yield, as either
Dimension
instances orstr
. Will be automatically expanded to a completeDimensionGraph
.- dataId :
dict
orDataCoordinate
, optional A data ID whose key-value pairs are used as equality constraints in the query.
- datasets :
Any
, optional An expression that fully or partially identifies dataset types that should constrain the yielded data IDs. For example, including “raw” here would constrain the yielded
instrument
,exposure
,detector
, andphysical_filter
values to only those for which at least one “raw” dataset exists incollections
. Allowed types includeDatasetType
,str
,re.Pattern
, and iterables thereof. Unlike other dataset type expressions,is not permitted - it doesn’t make sense to constrain data IDs on the existence of all datasets. See DatasetType expressions for more information.
- collections: `Any`, optional
An expression that fully or partially identifies the collections to search for datasets, such as a
str
,re.Pattern
, or iterable thereof.can be used to return all collections. Must be provided if
datasets
is, and is ignored if it is not. See Collection expressions for more information.- where :
str
, optional A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information.
- expand :
bool
, optional If
True
(default) yieldExpandedDataCoordinate
instead of minimalDataCoordinate
base-class instances.- kwds
Additional keyword arguments are forwarded to
DataCoordinate.standardize
when processing thedataId
argument (and may be used to provide a constraining data ID even when thedataId
argument isNone
).
Yields: - dataId :
DataCoordinate
Data IDs matching the given query parameters. Order is unspecified.
- dimensions :
-
registerCollection
(name: str, type: lsst.daf.butler.registry._collectionType.CollectionType = <CollectionType.TAGGED: 2>)¶ Add a new collection if one with the given name does not exist.
Parameters: - name :
str
The name of the collection to create.
- type :
CollectionType
Enum value indicating the type of collection to create.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- name :
-
registerDatasetType
(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶ Add a new
DatasetType
to the Registry.It is not an error to register the same
DatasetType
twice.Parameters: - datasetType :
DatasetType
The
DatasetType
to be added.
Returns: Raises: - ValueError
Raised if the dimensions or storage class are invalid.
- ConflictingDefinitionError
Raised if this DatasetType is already registered with a different definition.
- datasetType :
-
registerOpaqueTable
(tableName: str, spec: lsst.daf.butler.core.ddl.TableSpec)¶ Add an opaque (to the
Registry
) table for use by aDatastore
or other data repository client.Opaque table records can be added via
insertOpaqueData
, retrieved viafetchOpaqueData
, and removed viadeleteOpaqueData
.Parameters: - tableName :
str
Logical name of the opaque table. This may differ from the actual name used in the database by a prefix and/or suffix.
- spec :
ddl.TableSpec
Specification for the table to be added.
- tableName :
-
registerRun
(name: str)¶ Add a new run if one with the given name does not exist.
Parameters: - name :
str
The name of the run to create.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- name :
-
relateDataIds
(a: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any]], b: Union[lsst.daf.butler.core.dimensions.coordinate.DataCoordinate, Mapping[str, Any]]) → Optional[lsst.daf.butler.registry._registry.ConsistentDataIds]¶ Compare the keys and values of a pair of data IDs for consistency.
See
ConsistentDataIds
for more information.Parameters: - a :
dict
orDataCoordinate
First data ID to be compared.
- b :
dict
orDataCoordinate
Second data ID to be compared.
Returns: - relationship :
ConsistentDataIds
orNone
Relationship information. This is not
None
and coerces toTrue
in boolean contexts if and only if the data IDs are consistent in terms of all common key-value pairs, all many-to-many join tables, and all spatial andtemporal relationships.
- a :
-
removeDataset
(ref: lsst.daf.butler.core.datasets.ref.DatasetRef)¶ Remove a dataset from the Registry.
The dataset and all components will be removed unconditionally from all collections, and any associated
Quantum
records will also be removed.Datastore
records will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.Parameters: - ref :
DatasetRef
Reference to the dataset to be removed. Must include a valid
id
attribute, and should be considered invalidated upon return.
Raises: - ref :
-
removeDatasetLocation
(datastoreName: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶ Remove datastore location associated with this dataset.
Typically used by
Datastore
when a dataset is removed.Parameters: - datastoreName :
str
Name of this
Datastore
.- refs : iterable of
DatasetRef
A reference to the dataset for which information is to be removed.
Raises: - AmbiguousDatasetError
Raised if
ref.id
isNone
.
- datastoreName :
-
setCollectionChain
(parent: str, children: Any)¶ Define or redefine a
CHAINED
collection.Parameters: - parent :
str
Name of the chained collection. Must have already been added via a call to
Registry.registerCollection
.- children :
Any
An expression defining an ordered search of child collections, generally an iterable of
str
. Restrictions on the dataset types to be searched can also be included, by passing mapping or an iterable containing tuples; see Collection expressions for more information.
Raises: - parent :
-
syncDimensionData
(element: Union[lsst.daf.butler.core.dimensions.elements.DimensionElement, str], row: Union[dict, lsst.daf.butler.core.dimensions.records.DimensionRecord], conform: bool = True) → bool¶ Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does.
Parameters: - element :
DimensionElement
orstr
The
DimensionElement
or name thereof that identifies the table records will be inserted into.- row :
dict
orDimensionRecord
The record to insert.
- conform :
bool
, optional If
False
(True
is default) perform no checking or conversions, and assume thatelement
is aDimensionElement
instance anddata
is a one or moreDimensionRecord
instances of the appropriate subclass.
Returns: Raises: - ConflictingDefinitionError
Raised if the record exists in the database (according to primary key lookup) but is inconsistent with the given one.
Notes
This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent.
- element :
-
transaction
()¶ Return a context manager that represents a transaction.
- config :