MetricConnections¶
- 
class lsst.verify.tasks.MetricConnections(*, config: PipelineTaskConfig = None)¶
- Bases: - lsst.pipe.base.PipelineTaskConnections- An abstract connections class defining a metric output. - This class assumes detector-level metrics, which is the most common case. Subclasses can redeclare - measurementand- dimensionsto override this assumption.- Notes - MetricConnectionsdefines the following dataset templates:
- package
- Name of the metric’s namespace. By verify_metrics convention, this is the name of the package the metric is most closely associated with.
- metric
- Name of the metric, excluding any namespace.
 
 - Attributes Summary - allConnections- defaultTemplates- dimensions- initInputs- initOutputs- inputs- measurement- outputs- prerequisiteInputs- Methods Summary - adjustQuantum(datasetRefMap, …)- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- buildDatasetRefs(quantum)- Builds QuantizedConnections corresponding to input Quantum - Attributes Documentation - 
allConnections= {'measurement': Output(name='metricvalue_{package}_{metric}', storageClass='MetricValue', doc='The metric value computed by this task.', multiple=False, dimensions={'detector', 'visit', 'instrument'})}¶
 - 
defaultTemplates= {'metric': None, 'package': None}¶
 - 
dimensions= {'detector', 'visit', 'instrument'}¶
 - 
initInputs= frozenset()¶
 - 
initOutputs= frozenset()¶
 - 
inputs= frozenset()¶
 - 
measurement¶
 - 
outputs= frozenset({'measurement'})¶
 - 
prerequisiteInputs= frozenset()¶
 - Methods Documentation - 
adjustQuantum(datasetRefMap: lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]) → lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]¶
- Override to make adjustments to - lsst.daf.butler.DatasetRefobjects in the- lsst.daf.butler.core.Quantumduring the graph generation stage of the activator.- The base class implementation simply checks that input connections with - multipleset to- Falsehave no more than one dataset.- Parameters: - datasetRefMap : NamedKeyDict
- Mapping from dataset type to a - setof- lsst.daf.butler.DatasetRefobjects
 - Returns: - datasetRefMap : NamedKeyDict
- Modified mapping of input with possibly adjusted - lsst.daf.butler.DatasetRefobjects.
 - Raises: - ScalarError
- Raised if any - Inputor- PrerequisiteInputconnection has- multipleset to- False, but multiple datasets.
- Exception
- Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found. 
 
- datasetRefMap : 
 - 
buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶
- Builds QuantizedConnections corresponding to input Quantum - Parameters: - quantum : lsst.daf.butler.Quantum
- Quantum object which defines the inputs and outputs for a given unit of processing 
 - Returns: - retVal : tupleof (InputQuantizedConnection,
- OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the input- lsst.daf.butler.Quantum
 
- quantum :