Registry¶
- 
class lsst.daf.butler.Registry(database: Database, defaults: RegistryDefaults, managers: RegistryManagerInstances)¶
- Bases: - object- Registry interface. - Parameters: - database : Database
- Database instance to store Registry. 
- defaults : RegistryDefaults, optional
- Default collection search path and/or output - RUNcollection.
- attributes : type
- Manager class implementing - ButlerAttributeManager.
- opaque : type
- Manager class implementing - OpaqueTableStorageManager.
- dimensions : type
- Manager class implementing - DimensionRecordStorageManager.
- collections : type
- Manager class implementing - CollectionManager.
- datasets : type
- Manager class implementing - DatasetRecordStorageManager.
- datastoreBridges : type
- Manager class implementing - DatastoreRegistryBridgeManager.
- dimensionConfig : DimensionConfig, optional
- Dimension universe configuration, only used when - createis True.
- writeable : bool, optional
- If True then Registry will support write operations. 
- create : bool, optional
- If True then database schema will be initialized, it must be empty before instantiating Registry. 
 - Attributes Summary - defaultConfigFile- Path to configuration defaults. - defaults- Default collection search path and/or output - RUNcollection (- RegistryDefaults).- dimensions- All dimensions recognized by this - Registry(- DimensionUniverse).- Methods Summary - associate(collection, refs)- Add existing datasets to a - TAGGEDcollection.- certify(collection, refs, timespan)- Associate one or more datasets with a calibration collection and a validity range within it. - copy(defaults)- Create a new - Registrybacked by the same data repository and connection as this one, but independent defaults.- createFromConfig(config, str, None] = None, …)- Create registry database and return - Registryinstance.- decertify(collection, datasetType, …)- Remove or adjust datasets to clear a validity range within a calibration collection. - deleteOpaqueData(tableName, **where)- Remove records from an opaque table. - disassociate(collection, refs)- Remove existing datasets from a - TAGGEDcollection.- expandDataId(dataId, Mapping[str, Any], …)- Expand a dimension-based data ID to include additional information. - fetchOpaqueData(tableName, **where)- Retrieve records from an opaque table. - findDataset(datasetType, str], dataId, …)- Find a dataset given its - DatasetTypeand data ID.- fromConfig(config, RegistryConfig, Config, …)- Create - Registrysubclass instance from- config.- getCollectionChain(parent)- Return the child collections in a - CHAINEDcollection.- getCollectionDocumentation(collection)- Retrieve the documentation string for a collection. - getCollectionSummary(collection)- Return a summary for the given collection. - getCollectionType(name)- Return an enumeration value indicating the type of the given collection. - getDataset(id)- Retrieve a Dataset entry. - getDatasetLocations(ref)- Retrieve datastore locations for a given dataset. - getDatasetType(name)- Get the - DatasetType.- getDatastoreBridgeManager()- Return an object that allows a new - Datastoreinstance to communicate with this- Registry.- insertDatasets(datasetType, str], dataIds, …)- Insert one or more datasets into the - Registry- insertDimensionData(element, str], *data, …)- Insert one or more dimension records into the database. - insertOpaqueData(tableName, *data)- Insert records into an opaque table. - isWriteable()- Return - Trueif this registry allows write operations, and- Falseotherwise.- makeQueryBuilder(summary)- Return a - QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable via- Registryinterfaces.- queryCollections(expression, datasetType, …)- Iterate over the collections whose names match an expression. - queryDataIds(dimensions, str]], …)- Query for data IDs matching user-provided criteria. - queryDatasetAssociations(datasetType, …)- Iterate over dataset-collection combinations where the dataset is in the collection. - queryDatasetTypes(expression, *, components)- Iterate over the dataset types whose names match an expression. - queryDatasets(datasetType, *, collections, …)- Query for and iterate over dataset references matching user-provided criteria. - queryDimensionRecords(element, str], *, …)- Query for dimension information matching user-provided criteria. - refresh()- Refresh all in-memory state by querying the database. - registerCollection(name, type, doc)- Add a new collection if one with the given name does not exist. - registerDatasetType(datasetType)- Add a new - DatasetTypeto the Registry.- registerOpaqueTable(tableName, spec)- Add an opaque (to the - Registry) table for use by a- Datastoreor other data repository client.- registerRun(name, doc)- Add a new run if one with the given name does not exist. - removeCollection(name)- Completely remove the given collection. - removeDatasetType(name)- Remove the named - DatasetTypefrom the registry.- removeDatasets(refs)- Remove datasets from the Registry. - resetConnectionPool()- Reset SQLAlchemy connection pool for registry database. - setCollectionChain(parent, children)- Define or redefine a - CHAINEDcollection.- setCollectionDocumentation(collection, doc)- Set the documentation string for a collection. - syncDimensionData(element, str], row, Any], …)- Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does. - transaction(*, savepoint)- Return a context manager that represents a transaction. - Attributes Documentation - 
defaultConfigFile= None¶
- Path to configuration defaults. Accessed within the - configsresource or relative to a search path. Can be None if no defaults specified.
 - 
defaults¶
- Default collection search path and/or output - RUNcollection (- RegistryDefaults).- This is an immutable struct whose components may not be set individually, but the entire struct can be set by assigning to this property. 
 - 
dimensions¶
- All dimensions recognized by this - Registry(- DimensionUniverse).
 - Methods Documentation - 
associate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Add existing datasets to a - TAGGEDcollection.- If a DatasetRef with the same exact integer ID is already in a collection nothing is changed. If a - DatasetRefwith the same- DatasetTypeand data ID but with different integer ID exists in the collection,- ConflictingDefinitionErroris raised.- Parameters: - collection : str
- Indicates the collection the datasets should be associated with. 
- refs : Iterable[DatasetRef]
- An iterable of resolved - DatasetRefinstances that already exist in this- Registry.
 - Raises: - ConflictingDefinitionError
- If a Dataset with the given - DatasetRefalready exists in the given collection.
- AmbiguousDatasetError
- Raised if - any(ref.id is None for ref in refs).
- MissingCollectionError
- Raised if - collectiondoes not exist in the registry.
- TypeError
- Raise adding new datasets to the given - collectionis not allowed.
 
- collection : 
 - 
certify(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], timespan: lsst.daf.butler.core.timespan.Timespan) → None¶
- Associate one or more datasets with a calibration collection and a validity range within it. - Parameters: - collection : str
- The name of an already-registered - CALIBRATIONcollection.
- refs : Iterable[DatasetRef]
- Datasets to be associated. 
- timespan : Timespan
- The validity range for these datasets within the collection. 
 - Raises: - AmbiguousDatasetError
- Raised if any of the given - DatasetRefinstances is unresolved.
- ConflictingDefinitionError
- Raised if the collection already contains a different dataset with the same - DatasetTypeand data ID and an overlapping validity range.
- TypeError
- Raised if - collectionis not a- CALIBRATIONcollection or if one or more datasets are of a dataset type for which- DatasetType.isCalibrationreturns- False.
 
- collection : 
 - 
copy(defaults: Optional[lsst.daf.butler.registry._defaults.RegistryDefaults] = None) → lsst.daf.butler.registry._registry.Registry¶
- Create a new - Registrybacked by the same data repository and connection as this one, but independent defaults.- Parameters: - defaults : RegistryDefaults, optional
- Default collections and data ID values for the new registry. If not provided, - self.defaultswill be used (but future changes to either registry’s defaults will not affect the other).
 - Returns: - Notes - Because the new registry shares a connection with the original, they also share transaction state (despite the fact that their - transactioncontext manager methods do not reflect this), and must be used with care.
- defaults : 
 - 
classmethod createFromConfig(config: Union[lsst.daf.butler.registry._config.RegistryConfig, str, None] = None, dimensionConfig: Union[lsst.daf.butler.core.dimensions._config.DimensionConfig, str, None] = None, butlerRoot: Optional[str] = None) → lsst.daf.butler.registry._registry.Registry¶
- Create registry database and return - Registryinstance.- This method initializes database contents, database must be empty prior to calling this method. - Parameters: - config : RegistryConfigorstr, optional
- Registry configuration, if missing then default configuration will be loaded from registry.yaml. 
- dimensionConfig : DimensionConfigorstr, optional
- Dimensions configuration, if missing then default configuration will be loaded from dimensions.yaml. 
- butlerRoot : str, optional
- Path to the repository root this - Registrywill manage.
 - Returns: 
- config : 
 - 
decertify(collection: str, datasetType: Union[str, lsst.daf.butler.core.datasets.type.DatasetType], timespan: lsst.daf.butler.core.timespan.Timespan, *, dataIds: Optional[Iterable[Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any]]]] = None) → None¶
- Remove or adjust datasets to clear a validity range within a calibration collection. - Parameters: - collection : str
- The name of an already-registered - CALIBRATIONcollection.
- datasetType : strorDatasetType
- Name or - DatasetTypeinstance for the datasets to be decertified.
- timespan : Timespan, optional
- The validity range to remove datasets from within the collection. Datasets that overlap this range but are not contained by it will have their validity ranges adjusted to not overlap it, which may split a single dataset validity range into two. 
- dataIds : Iterable[DataId], optional
- Data IDs that should be decertified within the given validity range If - None, all data IDs for- self.datasetTypewill be decertified.
 - Raises: - TypeError
- Raised if - collectionis not a- CALIBRATIONcollection or if- datasetType.isCalibration() is False.
 
- collection : 
 - 
deleteOpaqueData(tableName: str, **where) → None¶
- Remove records from an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- where
- Additional keyword arguments are interpreted as equality constraints that restrict the deleted rows (combined with AND); keyword arguments are column names and values are the values they must have. 
 
- tableName : 
 - 
disassociate(collection: str, refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Remove existing datasets from a - TAGGEDcollection.- collectionand- refcombinations that are not currently associated are silently ignored.- Parameters: - collection : str
- The collection the datasets should no longer be associated with. 
- refs : Iterable[DatasetRef]
- An iterable of resolved - DatasetRefinstances that already exist in this- Registry.
 - Raises: - AmbiguousDatasetError
- Raised if any of the given dataset references is unresolved. 
- MissingCollectionError
- Raised if - collectiondoes not exist in the registry.
- TypeError
- Raise adding new datasets to the given - collectionis not allowed.
 
- collection : 
 - 
expandDataId(dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, graph: Optional[lsst.daf.butler.core.dimensions._graph.DimensionGraph] = None, records: Union[lsst.daf.butler.core.named.NamedKeyMapping[lsst.daf.butler.core.dimensions._elements.DimensionElement, typing.Union[lsst.daf.butler.core.dimensions._records.DimensionRecord, NoneType]][lsst.daf.butler.core.dimensions._elements.DimensionElement, Optional[lsst.daf.butler.core.dimensions._records.DimensionRecord]], Mapping[str, Optional[lsst.daf.butler.core.dimensions._records.DimensionRecord]], None] = None, withDefaults: bool = True, **kwargs) → lsst.daf.butler.core.dimensions._coordinate.DataCoordinate¶
- Expand a dimension-based data ID to include additional information. - Parameters: - dataId : DataCoordinateordict, optional
- Data ID to be expanded; augmented and overridden by - kwds.
- graph : DimensionGraph, optional
- Set of dimensions for the expanded ID. If - None, the dimensions will be inferred from the keys of- dataIdand- kwds. Dimensions that are in- dataIdor- kwdsbut not in- graphare silently ignored, providing a way to extract and expand a subset of a data ID.
- records : Mapping[str,DimensionRecord], optional
- Dimension record data to use before querying the database for that data, keyed by element name. 
- withDefaults : bool, optional
- Utilize - self.defaults.dataIdto fill in missing governor dimension key-value pairs. Defaults to- True(i.e. defaults are used).
- **kwargs
- Additional keywords are treated like additional key-value pairs for - dataId, extending and overriding
 - Returns: - expanded : DataCoordinate
- A data ID that includes full metadata for all of the dimensions it identifieds, i.e. guarantees that - expanded.hasRecords()and- expanded.hasFull()both return- True.
 
- dataId : 
 - 
fetchOpaqueData(tableName: str, **where) → Iterator[dict]¶
- Retrieve records from an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- where
- Additional keyword arguments are interpreted as equality constraints that restrict the returned rows (combined with AND); keyword arguments are column names and values are the values they must have. 
 - Yields: - row : dict
- A dictionary representing a single result row. 
 
- tableName : 
 - 
findDataset(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, *, collections: Optional[Any] = None, timespan: Optional[lsst.daf.butler.core.timespan.Timespan] = None, **kwargs) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Find a dataset given its - DatasetTypeand data ID.- This can be used to obtain a - DatasetRefthat permits the dataset to be read from a- Datastore. If the dataset is a component and can not be found using the provided dataset type, a dataset ref for the parent will be returned instead but with the correct dataset type.- Parameters: - datasetType : DatasetTypeorstr
- A - DatasetTypeor the name of one.
- dataId : dictorDataCoordinate, optional
- A - dict-like object containing the- Dimensionlinks that identify the dataset within a collection.
- collections, optional.
- An expression that fully or partially identifies the collections to search for the dataset; see Collection expressions for more information. Defaults to - self.defaults.collections.
- timespan : Timespan, optional
- A timespan that the validity range of the dataset must overlap. If not provided, any - CALIBRATIONcollections matched by the- collectionsargument will not be searched.
- **kwargs
- Additional keyword arguments passed to - DataCoordinate.standardizeto convert- dataIdto a true- DataCoordinateor augment an existing one.
 - Returns: - ref : DatasetRef
- A reference to the dataset, or - Noneif no matching Dataset was found.
 - Raises: - Notes - This method simply returns - Noneand does not raise an exception even when the set of collections searched is intrinsically incompatible with the dataset type, e.g. if- datasetType.isCalibration() is False, but only- CALIBRATIONcollections are being searched. This may make it harder to debug some lookup failures, but the behavior is intentional; we consider it more important that failed searches are reported consistently, regardless of the reason, and that adding additional collections that do not contain a match to the search path never changes the behavior.
- datasetType : 
 - 
classmethod fromConfig(config: Union[ButlerConfig, RegistryConfig, Config, str], butlerRoot: Optional[Union[str, ButlerURI]] = None, writeable: bool = True, defaults: Optional[RegistryDefaults] = None) → Registry¶
- Create - Registrysubclass instance from- config.- Registry database must be inbitialized prior to calling this method. - Parameters: - config : ButlerConfig,RegistryConfig,Configorstr
- Registry configuration 
- butlerRoot : strorButlerURI, optional
- Path to the repository root this - Registrywill manage.
- writeable : bool, optional
- If - True(default) create a read-write connection to the database.
- defaults : RegistryDefaults, optional
- Default collection search path and/or output - RUNcollection.
 - Returns: 
- config : 
 - 
getCollectionChain(parent: str) → lsst.daf.butler.registry.wildcards.CollectionSearch¶
- Return the child collections in a - CHAINEDcollection.- Parameters: - parent : str
- Name of the chained collection. Must have already been added via a call to - Registry.registerCollection.
 - Returns: - children : CollectionSearch
- An object that defines the search path of the collection. See Collection expressions for more information. 
 - Raises: 
- parent : 
 - 
getCollectionDocumentation(collection: str) → Optional[str]¶
- Retrieve the documentation string for a collection. - Parameters: - name : str
- Name of the collection. 
 - Returns: 
- name : 
 - 
getCollectionSummary(collection: str) → lsst.daf.butler.registry.summaries.CollectionSummary¶
- Return a summary for the given collection. - Parameters: - collection : str
- Name of the collection for which a summary is to be retrieved. 
 - Returns: - summary : CollectionSummary
- Summary of the dataset types and governor dimension values in this collection. 
 
- collection : 
 - 
getCollectionType(name: str) → lsst.daf.butler.registry._collectionType.CollectionType¶
- Return an enumeration value indicating the type of the given collection. - Parameters: - name : str
- The name of the collection. 
 - Returns: - type : CollectionType
- Enum value indicating the type of this collection. 
 - Raises: - MissingCollectionError
- Raised if no collection with the given name exists. 
 
- name : 
 - 
getDataset(id: int) → Optional[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Retrieve a Dataset entry. - Parameters: - id : int
- The unique identifier for the dataset. 
 - Returns: - ref : DatasetReforNone
- A ref to the Dataset, or - Noneif no matching Dataset was found.
 
- id : 
 - 
getDatasetLocations(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → Iterable[str]¶
- Retrieve datastore locations for a given dataset. - Parameters: - ref : DatasetRef
- A reference to the dataset for which to retrieve storage information. 
 - Returns: - datastores : Iterable[str]
- All the matching datastores holding this dataset. 
 - Raises: - AmbiguousDatasetError
- Raised if - ref.idis- None.
 
- ref : 
 - 
getDatasetType(name: str) → lsst.daf.butler.core.datasets.type.DatasetType¶
- Get the - DatasetType.- Parameters: - name : str
- Name of the type. 
 - Returns: - type : DatasetType
- The - DatasetTypeassociated with the given name.
 - Raises: - KeyError
- Requested named DatasetType could not be found in registry. 
 
- name : 
 - 
getDatastoreBridgeManager() → DatastoreRegistryBridgeManager¶
- Return an object that allows a new - Datastoreinstance to communicate with this- Registry.- Returns: - manager : DatastoreRegistryBridgeManager
- Object that mediates communication between this - Registryand its associated datastores.
 
- manager : 
 - 
insertDatasets(datasetType: Union[lsst.daf.butler.core.datasets.type.DatasetType, str], dataIds: Iterable[Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any]]], run: Optional[str] = None) → List[lsst.daf.butler.core.datasets.ref.DatasetRef]¶
- Insert one or more datasets into the - Registry- This always adds new datasets; to associate existing datasets with a new collection, use - associate.- Parameters: - datasetType : DatasetTypeorstr
- A - DatasetTypeor the name of one.
- dataIds : IterableofdictorDataCoordinate
- Dimension-based identifiers for the new datasets. 
- run : str, optional
- The name of the run that produced the datasets. Defaults to - self.defaults.run.
 - Returns: - refs : listofDatasetRef
- Resolved - DatasetRefinstances for all given data IDs (in the same order).
 - Raises: 
- datasetType : 
 - 
insertDimensionData(element: Union[lsst.daf.butler.core.dimensions._elements.DimensionElement, str], *data, conform: bool = True) → None¶
- Insert one or more dimension records into the database. - Parameters: - element : DimensionElementorstr
- The - DimensionElementor name thereof that identifies the table records will be inserted into.
- data : dictorDimensionRecord(variadic)
- One or more records to insert. 
- conform : bool, optional
- If - False(- Trueis default) perform no checking or conversions, and assume that- elementis a- DimensionElementinstance and- datais a one or more- DimensionRecordinstances of the appropriate subclass.
 
- element : 
 - 
insertOpaqueData(tableName: str, *data) → None¶
- Insert records into an opaque table. - Parameters: - tableName : str
- Logical name of the opaque table. Must match the name used in a previous call to - registerOpaqueTable.
- data
- Each additional positional argument is a dictionary that represents a single row to be added. 
 
- tableName : 
 - 
makeQueryBuilder(summary: lsst.daf.butler.registry.queries._structs.QuerySummary) → lsst.daf.butler.registry.queries._builder.QueryBuilder¶
- Return a - QueryBuilderinstance capable of constructing and managing more complex queries than those obtainable via- Registryinterfaces.- This is an advanced interface; downstream code should prefer - Registry.queryDataIdsand- Registry.queryDatasetswhenever those are sufficient.- Parameters: - summary : queries.QuerySummary
- Object describing and categorizing the full set of dimensions that will be included in the query. 
 - Returns: - builder : queries.QueryBuilder
- Object that can be used to construct and perform advanced queries. 
 
- summary : 
 - 
queryCollections(expression: Any = Ellipsis, datasetType: Optional[lsst.daf.butler.core.datasets.type.DatasetType] = None, collectionTypes: Iterable[lsst.daf.butler.registry._collectionType.CollectionType] = frozenset({<CollectionType.RUN: 1>, <CollectionType.TAGGED: 2>, <CollectionType.CHAINED: 3>, <CollectionType.CALIBRATION: 4>}), flattenChains: bool = False, includeChains: Optional[bool] = None) → Iterator[str]¶
- Iterate over the collections whose names match an expression. - Parameters: - expression : Any, optional
- An expression that fully or partially identifies the collections to return, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections, and is the default. See Collection expressions for more information.
- datasetType : DatasetType, optional
- If provided, only yield collections that may contain datasets of this type. This is a conservative approximation in general; it may yield collections that do not have any such datasets. 
- collectionTypes : AbstractSet[CollectionType], optional
- If provided, only yield collections of these types. 
- flattenChains : bool, optional
- If - True(- Falseis default), recursively yield the child collections of matching- CHAINEDcollections.
- includeChains : bool, optional
- If - True, yield records for matching- CHAINEDcollections. Default is the opposite of- flattenChains: include either CHAINED collections or their children, but not both.
 - Yields: - collection : str
- The name of a collection that matches - expression.
 
- expression : 
 - 
queryDataIds(dimensions: Union[Iterable[Union[lsst.daf.butler.core.dimensions._elements.Dimension, str]], lsst.daf.butler.core.dimensions._elements.Dimension, str], *, dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, components: Optional[bool] = None, bind: Optional[Mapping[str, Any]] = None, check: bool = True, **kwargs) → lsst.daf.butler.registry.queries._results.DataCoordinateQueryResults¶
- Query for data IDs matching user-provided criteria. - Parameters: - dimensions : Dimensionorstr, or iterable thereof
- The dimensions of the data IDs to yield, as either - Dimensioninstances or- str. Will be automatically expanded to a complete- DimensionGraph.
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- datasets : Any, optional
- An expression that fully or partially identifies dataset types that should constrain the yielded data IDs. For example, including “raw” here would constrain the yielded - instrument,- exposure,- detector, and- physical_filtervalues to only those for which at least one “raw” dataset exists in- collections. Allowed types include- DatasetType,- str,- re.Pattern, and iterables thereof. Unlike other dataset type expressions,- ...is not permitted - it doesn’t make sense to constrain data IDs on the existence of all datasets. See DatasetType expressions for more information.
- collections: `Any`, optional
- An expression that fully or partially identifies the collections to search for datasets, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all collections. Must be provided if- datasetsis, and is ignored if it is not. See Collection expressions for more information. If not provided,- self.default.collectionsis used.
- where : str, optional
- A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information. 
- components : bool, optional
- If - True, apply all dataset expression patterns to component dataset type names as well. If- False, never apply patterns to components. If- None(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (- stror- DatasetTypeinstances) are always included.
- bind : Mapping, optional
- Mapping containing literal values that should be injected into the - whereexpression, keyed by the identifiers they replace.
- check : bool, optional
- If - True(default) check the query for consistency before executing it. This may reject some valid queries that resemble common mistakes (e.g. queries for visits without specifying an instrument).
- **kwargs
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Returns: - dataIds : DataCoordinateQueryResults
- Data IDs matching the given query parameters. These are guaranteed to identify all dimensions ( - DataCoordinate.hasFullreturns- True), but will not contain- DimensionRecordobjects (- DataCoordinate.hasRecordsreturns- False). Call- DataCoordinateQueryResults.expandedon the returned object to fetch those (and consider using- DataCoordinateQueryResults.materializeon the returned object first if the expected number of rows is very large). See documentation for those methods for additional information.
 - Raises: 
- dimensions : 
 - 
queryDatasetAssociations(datasetType: Union[str, lsst.daf.butler.core.datasets.type.DatasetType], collections: Any = Ellipsis, *, collectionTypes: Iterable[lsst.daf.butler.registry._collectionType.CollectionType] = frozenset({<CollectionType.RUN: 1>, <CollectionType.TAGGED: 2>, <CollectionType.CHAINED: 3>, <CollectionType.CALIBRATION: 4>}), flattenChains: bool = False) → Iterator[lsst.daf.butler.core.datasets.association.DatasetAssociation]¶
- Iterate over dataset-collection combinations where the dataset is in the collection. - This method is a temporary placeholder for better support for assocation results in - queryDatasets. It will probably be removed in the future, and should be avoided in production code whenever possible.- Parameters: - datasetType : DatasetTypeorstr
- A dataset type object or the name of one. 
- collections: `Any`, optional
- An expression that fully or partially identifies the collections to search for datasets. See - queryCollectionsand Collection expressions for more information. If not provided,- self.default.collectionsis used.
- collectionTypes : AbstractSet[CollectionType], optional
- If provided, only yield associations from collections of these types. 
- flattenChains : bool, optional
- If - True(default) search in the children of- CHAINEDcollections. If- False,- CHAINEDcollections are ignored.
 - Yields: - association : DatasetAssociation
- Object representing the relationship beween a single dataset and a single collection. 
 - Raises: 
- datasetType : 
 - 
queryDatasetTypes(expression: Any = Ellipsis, *, components: Optional[bool] = None) → Iterator[lsst.daf.butler.core.datasets.type.DatasetType]¶
- Iterate over the dataset types whose names match an expression. - Parameters: - expression : Any, optional
- An expression that fully or partially identifies the dataset types to return, such as a - str,- re.Pattern, or iterable thereof.- can be used to return all dataset types, and is the default. See DatasetType expressions for more information.
- components : bool, optional
- If - True, apply all expression patterns to component dataset type names as well. If- False, never apply patterns to components. If- None(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (- stror- DatasetTypeinstances) are always included.
 - Yields: - datasetType : DatasetType
- A - DatasetTypeinstance whose name matches- expression.
 
- expression : 
 - 
queryDatasets(datasetType: Any, *, collections: Optional[Any] = None, dimensions: Optional[Iterable[Union[lsst.daf.butler.core.dimensions._elements.Dimension, str]]] = None, dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, where: Optional[str] = None, findFirst: bool = False, components: Optional[bool] = None, bind: Optional[Mapping[str, Any]] = None, check: bool = True, **kwargs) → lsst.daf.butler.registry.queries._results.DatasetQueryResults¶
- Query for and iterate over dataset references matching user-provided criteria. - Parameters: - datasetType
- An expression that fully or partially identifies the dataset types to be queried. Allowed types include - DatasetType,- str,- re.Pattern, and iterables thereof. The special value- can be used to query all dataset types. See DatasetType expressions for more information.
- collections: optional
- An expression that fully or partially identifies the collections to search for datasets, such as a - str,- re.Pattern, or iterable thereof.- can be used to find datasets from all- RUNcollections (no other collections are necessary, because all datasets are in a- RUNcollection). See Collection expressions for more information. If not provided,- self.default.collectionsis used.
- dimensions : IterableofDimensionorstr
- Dimensions to include in the query (in addition to those used to identify the queried dataset type(s)), either to constrain the resulting datasets to those for which a matching dimension exists, or to relate the dataset type’s dimensions to dimensions referenced by the - dataIdor- wherearguments.
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- where : str, optional
- A string expression similar to a SQL WHERE clause. May involve any column of a dimension table or (as a shortcut for the primary key column of a dimension table) dimension name. See Dimension expressions for more information. 
- findFirst : bool, optional
- If - True(- Falseis default), for each result data ID, only yield one- DatasetRefof each- DatasetType, from the first collection in which a dataset of that dataset type appears (according to the order of- collectionspassed in). If- True,- collectionsmust not contain regular expressions and may not be- .
- components : bool, optional
- If - True, apply all dataset expression patterns to component dataset type names as well. If- False, never apply patterns to components. If- None(default), apply patterns to components only if their parent datasets were not matched by the expression. Fully-specified component datasets (- stror- DatasetTypeinstances) are always included.
- bind : Mapping, optional
- Mapping containing literal values that should be injected into the - whereexpression, keyed by the identifiers they replace.
- check : bool, optional
- If - True(default) check the query for consistency before executing it. This may reject some valid queries that resemble common mistakes (e.g. queries for visits without specifying an instrument).
- **kwargs
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Returns: - refs : queries.DatasetQueryResults
- Dataset references matching the given query criteria. 
 - Raises: - Notes - When multiple dataset types are queried in a single call, the results of this operation are equivalent to querying for each dataset type separately in turn, and no information about the relationships between datasets of different types is included. In contexts where that kind of information is important, the recommended pattern is to use - queryDataIdsto first obtain data IDs (possibly with the desired dataset types and collections passed as constraints to the query), and then use multiple (generally much simpler) calls to- queryDatasetswith the returned data IDs passed as constraints.
 - 
queryDimensionRecords(element: Union[lsst.daf.butler.core.dimensions._elements.DimensionElement, str], *, dataId: Union[lsst.daf.butler.core.dimensions._coordinate.DataCoordinate, Mapping[str, Any], None] = None, datasets: Optional[Any] = None, collections: Optional[Any] = None, where: Optional[str] = None, components: Optional[bool] = None, bind: Optional[Mapping[str, Any]] = None, check: bool = True, **kwargs) → Iterator[lsst.daf.butler.core.dimensions._records.DimensionRecord]¶
- Query for dimension information matching user-provided criteria. - Parameters: - element : DimensionElementorstr
- The dimension element to obtain records for. 
- dataId : dictorDataCoordinate, optional
- A data ID whose key-value pairs are used as equality constraints in the query. 
- datasets : Any, optional
- An expression that fully or partially identifies dataset types that should constrain the yielded records. See - queryDataIdsand DatasetType expressions for more information.
- collections: `Any`, optional
- An expression that fully or partially identifies the collections to search for datasets. See - queryDataIdsand Collection expressions for more information.
- where : str, optional
- A string expression similar to a SQL WHERE clause. See - queryDataIdsand Dimension expressions for more information.
- components : bool, optional
- Whether to apply dataset expressions to components as well. See - queryDataIdsfor more information.
- bind : Mapping, optional
- Mapping containing literal values that should be injected into the - whereexpression, keyed by the identifiers they replace.
- check : bool, optional
- If - True(default) check the query for consistency before executing it. This may reject some valid queries that resemble common mistakes (e.g. queries for visits without specifying an instrument).
- **kwargs
- Additional keyword arguments are forwarded to - DataCoordinate.standardizewhen processing the- dataIdargument (and may be used to provide a constraining data ID even when the- dataIdargument is- None).
 - Returns: - dataIds : DataCoordinateQueryResults
- Data IDs matching the given query parameters. 
 
- element : 
 - 
refresh() → None¶
- Refresh all in-memory state by querying the database. - This may be necessary to enable querying for entities added by other - Registryinstances after this one was constructed.
 - 
registerCollection(name: str, type: lsst.daf.butler.registry._collectionType.CollectionType = <CollectionType.TAGGED: 2>, doc: Optional[str] = None) → None¶
- Add a new collection if one with the given name does not exist. - Parameters: - name : str
- The name of the collection to create. 
- type : CollectionType
- Enum value indicating the type of collection to create. 
- doc : str, optional
- Documentation string for the collection. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- name : 
 - 
registerDatasetType(datasetType: lsst.daf.butler.core.datasets.type.DatasetType) → bool¶
- Add a new - DatasetTypeto the Registry.- It is not an error to register the same - DatasetTypetwice.- Parameters: - datasetType : DatasetType
- The - DatasetTypeto be added.
 - Returns: - Raises: - ValueError
- Raised if the dimensions or storage class are invalid. 
- ConflictingDefinitionError
- Raised if this DatasetType is already registered with a different definition. 
 - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
- datasetType : 
 - 
registerOpaqueTable(tableName: str, spec: lsst.daf.butler.core.ddl.TableSpec) → None¶
- Add an opaque (to the - Registry) table for use by a- Datastoreor other data repository client.- Opaque table records can be added via - insertOpaqueData, retrieved via- fetchOpaqueData, and removed via- deleteOpaqueData.- Parameters: - tableName : str
- Logical name of the opaque table. This may differ from the actual name used in the database by a prefix and/or suffix. 
- spec : ddl.TableSpec
- Specification for the table to be added. 
 
- tableName : 
 - 
registerRun(name: str, doc: Optional[str] = None) → None¶
- Add a new run if one with the given name does not exist. - Parameters: - Notes - This method cannot be called within transactions, as it needs to be able to perform its own transaction to be concurrent. 
 - 
removeCollection(name: str) → None¶
- Completely remove the given collection. - Parameters: - name : str
- The name of the collection to remove. 
 - Raises: - MissingCollectionError
- Raised if no collection with the given name exists. 
 - Notes - If this is a - RUNcollection, all datasets and quanta in it are also fully removed. This requires that those datasets be removed (or at least trashed) from any datastores that hold them first.- A collection may not be deleted as long as it is referenced by a - CHAINEDcollection; the- CHAINEDcollection must be deleted or redefined first.
- name : 
 - 
removeDatasetType(name: str) → None¶
- Remove the named - DatasetTypefrom the registry.- Warning - Registry caches the dataset type definitions. This means that deleting the dataset type definition may result in unexpected behavior from other butler processes that are active that have not seen the deletion. - Parameters: - name : str
- Name of the type to be removed. 
 - Raises: - lsst.daf.butler.registry.OrphanedRecordError
- Raised if an attempt is made to remove the dataset type definition when there are already datasets associated with it. 
 - Notes - If the dataset type is not registered the method will return without action. 
- name : 
 - 
removeDatasets(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Remove datasets from the Registry. - The datasets will be removed unconditionally from all collections, and any - Quantumthat consumed this dataset will instead be marked with having a NULL input.- Datastorerecords will not be deleted; the caller is responsible for ensuring that the dataset has already been removed from all Datastores.- Parameters: - refs : IterableofDatasetRef
- References to the datasets to be removed. Must include a valid - idattribute, and should be considered invalidated upon return.
 - Raises: 
- refs : 
 - 
resetConnectionPool() → None¶
- Reset SQLAlchemy connection pool for registry database. - This operation is useful when using registry with fork-based multiprocessing. To use registry across fork boundary one has to make sure that there are no currently active connections (no session or transaction is in progress) and connection pool is reset using this method. This method should be called by the child process immediately after the fork. 
 - 
setCollectionChain(parent: str, children: Any) → None¶
- Define or redefine a - CHAINEDcollection.- Parameters: - parent : str
- Name of the chained collection. Must have already been added via a call to - Registry.registerCollection.
- children : Any
- An expression defining an ordered search of child collections, generally an iterable of - str; see Collection expressions for more information.
 - Raises: 
- parent : 
 - 
setCollectionDocumentation(collection: str, doc: Optional[str]) → None¶
- Set the documentation string for a collection. - Parameters: 
 - 
syncDimensionData(element: Union[lsst.daf.butler.core.dimensions._elements.DimensionElement, str], row: Union[Mapping[str, Any], lsst.daf.butler.core.dimensions._records.DimensionRecord], conform: bool = True) → bool¶
- Synchronize the given dimension record with the database, inserting if it does not already exist and comparing values if it does. - Parameters: - element : DimensionElementorstr
- The - DimensionElementor name thereof that identifies the table records will be inserted into.
- row : dictorDimensionRecord
- The record to insert. 
- conform : bool, optional
- If - False(- Trueis default) perform no checking or conversions, and assume that- elementis a- DimensionElementinstance and- datais a one or more- DimensionRecordinstances of the appropriate subclass.
 - Returns: - Raises: - ConflictingDefinitionError
- Raised if the record exists in the database (according to primary key lookup) but is inconsistent with the given one. 
 
- element : 
 - 
transaction(*, savepoint: bool = False) → Iterator[None]¶
- Return a context manager that represents a transaction. 
 
- database :