MegaPrimeRawIngestTask¶
-
class
lsst.obs.cfht.ingest.
MegaPrimeRawIngestTask
(config: Optional[lsst.obs.base.ingest.RawIngestConfig] = None, *, butler: lsst.daf.butler._butler.Butler, on_success: Callable[[List[lsst.daf.butler.core.fileDataset.FileDataset]], Any] = <function _do_nothing>, on_metadata_failure: Callable[[str, Exception], Any] = <function _do_nothing>, on_ingest_failure: Callable[[lsst.obs.base.ingest.RawExposureData, Exception], Any] = <function _do_nothing>, **kwargs)¶ Bases:
lsst.obs.base.RawIngestTask
Task for ingesting raw MegaPrime multi-extension FITS data into Gen3.
Methods Summary
emptyMetadata
()Empty (clear) the metadata for this Task and all sub-Tasks. expandDataIds
(data)Expand the data IDs associated with a raw exposure to include additional metadata records. extractMetadata
(filename)Extract and process metadata from a single raw file. getAllSchemaCatalogs
()Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict. getDatasetType
()Return the DatasetType of the datasets ingested by this Task. getFullMetadata
()Get metadata for all tasks. getFullName
()Get the task name as a hierarchical name including parent task names. getName
()Get the name of the task. getSchemaCatalogs
()Get the schemas generated by this task. getTaskDict
()Get a dictionary of all tasks as a shallow copy. groupByExposure
(files)Group an iterable of RawFileData
by exposure.ingestExposureDatasets
(exposure, *, run)Ingest all raw files in one exposure. makeField
(doc)Make a lsst.pex.config.ConfigurableField
for this task.makeSubtask
(name, **keyArgs)Create a subtask as a new instance as the name
attribute of this task.prep
(files, *, pool, processes)Perform all ingest preprocessing steps that do not involve actually modifying the database. run
(files, *, pool, processes, run)Ingest files into a Butler data repository. timer
(name[, logLevel])Context manager to log performance data for an arbitrary block of code. Methods Documentation
-
emptyMetadata
()¶ Empty (clear) the metadata for this Task and all sub-Tasks.
-
expandDataIds
(data: lsst.obs.base.ingest.RawExposureData) → lsst.obs.base.ingest.RawExposureData¶ Expand the data IDs associated with a raw exposure to include additional metadata records.
Parameters: - exposure :
RawExposureData
A structure containing information about the exposure to be ingested. Must have
RawExposureData.records
populated. Should be considered consumed upon return.
Returns: - exposure :
RawExposureData
An updated version of the input structure, with
RawExposureData.dataId
and nestedRawFileData.dataId
attributes updated to data IDs for whichDataCoordinate.hasRecords
returnsTrue
.
- exposure :
-
extractMetadata
(filename: str) → lsst.obs.base.ingest.RawFileData¶ Extract and process metadata from a single raw file.
Parameters: - filename :
str
Path to the file.
Returns: - data :
RawFileData
A structure containing the metadata extracted from the file, as well as the original filename. All fields will be populated, but the
RawFileData.dataId
attribute will be a minimal (unexpanded)DataCoordinate
instance.
Notes
Assumes that there is a single dataset associated with the given file. Instruments using a single file to store multiple datasets must implement their own version of this method.
- filename :
-
getAllSchemaCatalogs
()¶ Get schema catalogs for all tasks in the hierarchy, combining the results into a single dict.
Returns: - schemacatalogs :
dict
Keys are butler dataset type, values are a empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for all tasks in the hierarchy, from the top-level task down through all subtasks.
Notes
This method may be called on any task in the hierarchy; it will return the same answer, regardless.
The default implementation should always suffice. If your subtask uses schemas the override
Task.getSchemaCatalogs
, not this method.- schemacatalogs :
-
getDatasetType
()¶ Return the DatasetType of the datasets ingested by this Task.
-
getFullMetadata
()¶ Get metadata for all tasks.
Returns: - metadata :
lsst.daf.base.PropertySet
The
PropertySet
keys are the full task name. Values are metadata for the top-level task and all subtasks, sub-subtasks, etc.
Notes
The returned metadata includes timing information (if
@timer.timeMethod
is used) and any metadata set by the task. The name of each item consists of the full task name with.
replaced by:
, followed by.
and the name of the item, e.g.:topLevelTaskName:subtaskName:subsubtaskName.itemName
using
:
in the full task name disambiguates the rare situation that a task has a subtask and a metadata item with the same name.- metadata :
-
getFullName
()¶ Get the task name as a hierarchical name including parent task names.
Returns: - fullName :
str
The full name consists of the name of the parent task and each subtask separated by periods. For example:
- The full name of top-level task “top” is simply “top”.
- The full name of subtask “sub” of top-level task “top” is “top.sub”.
- The full name of subtask “sub2” of subtask “sub” of top-level task “top” is “top.sub.sub2”.
- fullName :
-
getSchemaCatalogs
()¶ Get the schemas generated by this task.
Returns: - schemaCatalogs :
dict
Keys are butler dataset type, values are an empty catalog (an instance of the appropriate
lsst.afw.table
Catalog type) for this task.
See also
Task.getAllSchemaCatalogs
Notes
Warning
Subclasses that use schemas must override this method. The default implementation returns an empty dict.
This method may be called at any time after the Task is constructed, which means that all task schemas should be computed at construction time, not when data is actually processed. This reflects the philosophy that the schema should not depend on the data.
Returning catalogs rather than just schemas allows us to save e.g. slots for SourceCatalog as well.
- schemaCatalogs :
-
getTaskDict
()¶ Get a dictionary of all tasks as a shallow copy.
Returns: - taskDict :
dict
Dictionary containing full task name: task object for the top-level task and all subtasks, sub-subtasks, etc.
- taskDict :
-
groupByExposure
(files: Iterable[lsst.obs.base.ingest.RawFileData]) → List[lsst.obs.base.ingest.RawExposureData]¶ Group an iterable of
RawFileData
by exposure.Parameters: - files : iterable of
RawFileData
File-level information to group.
Returns: - exposures :
list
ofRawExposureData
A list of structures that group the file-level information by exposure. All fields will be populated. The
RawExposureData.dataId
attributes will be minimal (unexpanded)DataCoordinate
instances.
- files : iterable of
-
ingestExposureDatasets
(exposure: lsst.obs.base.ingest.RawExposureData, *, run: Optional[str] = None) → List[lsst.daf.butler.core.fileDataset.FileDataset]¶ Ingest all raw files in one exposure.
Parameters: - exposure :
RawExposureData
A structure containing information about the exposure to be ingested. Must have
RawExposureData.records
populated and all data ID attributes expanded.- run :
str
, optional Name of a RUN-type collection to write to, overriding
self.butler.run
.
Returns: - datasets :
list
oflsst.daf.butler.FileDataset
Per-file structures identifying the files ingested and their dataset representation in the data repository.
- exposure :
-
classmethod
makeField
(doc)¶ Make a
lsst.pex.config.ConfigurableField
for this task.Parameters: - doc :
str
Help text for the field.
Returns: - configurableField :
lsst.pex.config.ConfigurableField
A
ConfigurableField
for this task.
Examples
Provides a convenient way to specify this task is a subtask of another task.
Here is an example of use:
class OtherTaskConfig(lsst.pex.config.Config): aSubtask = ATaskClass.makeField("brief description of task")
- doc :
-
makeSubtask
(name, **keyArgs)¶ Create a subtask as a new instance as the
name
attribute of this task.Parameters: - name :
str
Brief name of the subtask.
- keyArgs
Extra keyword arguments used to construct the task. The following arguments are automatically provided and cannot be overridden:
- “config”.
- “parentTask”.
Notes
The subtask must be defined by
Task.config.name
, an instance ofConfigurableField
orRegistryField
.- name :
-
prep
(files, *, pool: Optional[multiprocessing.context.BaseContext.Pool] = None, processes: int = 1) → Tuple[Iterator[lsst.obs.base.ingest.RawExposureData], List[str]]¶ Perform all ingest preprocessing steps that do not involve actually modifying the database.
Parameters: - files : iterable over
str
or path-like objects Paths to the files to be ingested. Will be made absolute if they are not already.
- pool :
multiprocessing.Pool
, optional If not
None
, a process pool with which to parallelize some operations.- processes :
int
, optional The number of processes to use. Ignored if
pool
is notNone
.
Returns: - files : iterable over
-
run
(files, *, pool: Optional[multiprocessing.context.BaseContext.Pool] = None, processes: int = 1, run: Optional[str] = None)¶ Ingest files into a Butler data repository.
This creates any new exposure or visit Dimension entries needed to identify the ingested files, creates new Dataset entries in the Registry and finally ingests the files themselves into the Datastore. Any needed instrument, detector, and physical_filter Dimension entries must exist in the Registry before
run
is called.Parameters: - files : iterable over
str
or path-like objects Paths to the files to be ingested. Will be made absolute if they are not already.
- pool :
multiprocessing.Pool
, optional If not
None
, a process pool with which to parallelize some operations.- processes :
int
, optional The number of processes to use. Ignored if
pool
is notNone
.- run :
str
, optional Name of a RUN-type collection to write to, overriding the default derived from the instrument name.
Returns: - refs :
list
oflsst.daf.butler.DatasetRef
Dataset references for ingested raws.
Notes
This method inserts all datasets for an exposure within a transaction, guaranteeing that partial exposures are never ingested. The exposure dimension record is inserted with
Registry.syncDimensionData
first (in its own transaction), which inserts only if a record with the same primary key does not already exist. This allows different files within the same exposure to be incremented in different runs.- files : iterable over
-
timer
(name, logLevel=10000)¶ Context manager to log performance data for an arbitrary block of code.
Parameters: - name :
str
Name of code being timed; data will be logged using item name:
Start
andEnd
.- logLevel
A
lsst.log
level constant.
See also
timer.logInfo
Examples
Creating a timer context:
with self.timer("someCodeToTime"): pass # code to time
- name :
-