TransformDiaSourceCatalogConnections

class lsst.ap.association.TransformDiaSourceCatalogConnections(*, config: PipelineTaskConfig = None)

Bases: lsst.pipe.base.PipelineTaskConnections

Butler connections for TransformDiaSourceCatalogTask.

Attributes Summary

allConnections
defaultTemplates
diaSourceCat
diaSourceSchema
diaSourceTable
diffIm
dimensions
initInputs
initOutputs
inputs
outputs
prerequisiteInputs

Methods Summary

adjustQuantum(datasetRefMap, …) Override to make adjustments to lsst.daf.butler.DatasetRef objects in the lsst.daf.butler.core.Quantum during the graph generation stage of the activator.
buildDatasetRefs(quantum) Builds QuantizedConnections corresponding to input Quantum

Attributes Documentation

allConnections = {'diaSourceCat': Input(name='{fakesType}{coaddName}Diff_diaSrc', storageClass='SourceCatalog', doc='Catalog of DiaSources produced during image differencing.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False), 'diaSourceSchema': InitInput(name='{fakesType}{coaddName}Diff_diaSrc_schema', storageClass='SourceCatalog', doc='Schema for DIASource catalog output by ImageDifference.', multiple=False), 'diaSourceTable': Output(name='{fakesType}{coaddName}Diff_diaSrcTable', storageClass='DataFrame', doc='.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'diffIm': Input(name='{fakesType}{coaddName}Diff_differenceExp', storageClass='ExposureF', doc='Difference image on which the DiaSources were detected.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False)}
defaultTemplates = {'coaddName': 'deep', 'fakesType': ''}
diaSourceCat
diaSourceSchema
diaSourceTable
diffIm
dimensions = {'detector', 'instrument', 'visit'}
initInputs = frozenset({'diaSourceSchema'})
initOutputs = frozenset()
inputs = frozenset({'diffIm', 'diaSourceCat'})
outputs = frozenset({'diaSourceTable'})
prerequisiteInputs = frozenset()

Methods Documentation

adjustQuantum(datasetRefMap: lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]) → lsst.daf.butler.core.named.NamedKeyDict[lsst.daf.butler.core.datasets.type.DatasetType, typing.Set[lsst.daf.butler.core.datasets.ref.DatasetRef]][lsst.daf.butler.core.datasets.type.DatasetType, Set[lsst.daf.butler.core.datasets.ref.DatasetRef]]

Override to make adjustments to lsst.daf.butler.DatasetRef objects in the lsst.daf.butler.core.Quantum during the graph generation stage of the activator.

The base class implementation simply checks that input connections with multiple set to False have no more than one dataset.

Parameters:
datasetRefMap : NamedKeyDict

Mapping from dataset type to a set of lsst.daf.butler.DatasetRef objects

Returns:
datasetRefMap : NamedKeyDict

Modified mapping of input with possibly adjusted lsst.daf.butler.DatasetRef objects.

Raises:
ScalarError

Raised if any Input or PrerequisiteInput connection has multiple set to False, but multiple datasets.

Exception

Overrides of this function have the option of raising an Exception if a field in the input does not satisfy a need for a corresponding pipelineTask, i.e. no reference catalogs are found.

buildDatasetRefs(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]

Builds QuantizedConnections corresponding to input Quantum

Parameters:
quantum : lsst.daf.butler.Quantum

Quantum object which defines the inputs and outputs for a given unit of processing

Returns:
retVal : tuple of (InputQuantizedConnection,

OutputQuantizedConnection) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the input lsst.daf.butler.Quantum