PlotPhotonTransferCurveTask¶
- 
class lsst.cp.pipe.PlotPhotonTransferCurveTask(datasetFilename, linearizerFileName=None, outDir='.', detNum=999, signalElectronsRelativeA=75000, plotNormalizedCovariancesNumberOfBins=10)¶
- Bases: - object- A class to plot the dataset from MeasurePhotonTransferCurveTask. - Parameters: - datasetFileName : str
- datasetPtc (lsst.ip.isr.PhotonTransferCurveDataset) file name (fits). 
- linearizerFileName : str, optional
- linearizer (isr.linearize.Linearizer) file name (fits). 
- outDir : str, optional
- Path to the output directory where the final PDF will be placed. 
- detNum : int, optional
- Detector number. 
- signalElectronsRelativeA : float, optional
- Signal value for relative systematic bias between different methods of estimating a_ij (Fig. 15 of Astier+19). 
- plotNormalizedCovariancesNumberOfBins : float, optional
- Number of bins in - plotNormalizedCovariancesNumberfunction (Fig. 8, 10., of Astier+19).
 - Notes - The plotting code in this file is almost identical to the code in - plotPtcGen2.py. If further changes are implemented in this file,- plotPtcGen2.pyneeds to be updated accordingly, and vice versa. The file- plotPtcGen2.pyhelps with maintaining backwards compatibility with gen2 as we transition to gen3; the code duplication is meant to only last for few month from now (Jan, 2021). At that point only this file,- plotPtc.py, will remain.- Methods Summary - ab_vs_dist(aDict, bDict, pdfPages[, bRange])- Fig. - binData(x, y, binIndex[, wy])- Bin data (usually for display purposes). - covAstierMakeAllPlots(dataset, pdfPages[, log])- Make plots for MeasurePhotonTransferCurve task when doCovariancesAstier=True. - findGroups(x, maxDiff)- Group data into bins, with at most maxDiff distance between bins. - indexForBins(x, nBins)- Builds an index with regular binning. - plotAcoeffsSum(aDict, bDict, pdfPages)- Fig. - plotCovariances(mu, covs, covsModel, …)- Plot covariances and models: Cov00, Cov10, Cov01. - plotNormalizedCovariances(i, j, inputMu, …)- Plot C_ij/mu vs mu. - plotRelativeBiasACoeffs(aDict, aDictNoB, …)- Fig. - plot_a_b(aDict, bDict, pdfPages[, bRange])- Fig. - run(filenameFull, datasetPtc[, linearizer, log])- Make the plots for the PTC task - runDataRef()- Run the Photon Transfer Curve (PTC) plotting measurement task. - Methods Documentation - 
static ab_vs_dist(aDict, bDict, pdfPages, bRange=4)¶
- Fig. 13 of Astier+19. - Values of a and b arrays fits, averaged over amplifiers, as a function of distance. - Parameters: - aDict : dict[numpy.array]
- Dictionary keyed by amp names containing the fitted ‘a’ coefficients from the model in Eq. 20 of Astier+19 (if - ptcFitTypeis- FULLCOVARIANCE).
- bDict : dict[numpy.array]
- Dictionary keyed by amp names containing the fitted ‘b’ coefficients from the model in Eq. 20 of Astier+19 (if - ptcFitTypeis- FULLCOVARIANCE).
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
- bRange : int
- Maximum lag for b arrays. 
 
- aDict : 
 - 
static binData(x, y, binIndex, wy=None)¶
- Bin data (usually for display purposes). - Parameters: - x : numpy.array
- Data to bin. 
- y : numpy.array
- Data to bin. 
- binIdex : list
- Bin number of each datum. 
- wy : numpy.array
- Inverse rms of each datum to use when averaging (the actual weight is wy**2). 
 - Returns: - xbin : numpy.array
- Binned data in x. 
- ybin : numpy.array
- Binned data in y. 
- wybin : numpy.array
- Binned weights in y, computed from wy’s in each bin. 
- sybin : numpy.array
- Uncertainty on the bin average, considering actual scatter, and ignoring weights. 
 
- x : 
 - 
covAstierMakeAllPlots(dataset, pdfPages, log=None)¶
- Make plots for MeasurePhotonTransferCurve task when doCovariancesAstier=True. - This function call other functions that mostly reproduce the plots in Astier+19. Most of the code is ported from Pierre Astier’s repository https://github.com/PierreAstier/bfptc - Parameters: - dataset : lsst.ip.isr.ptcDataset.PhotonTransferCurveDataset
- The dataset containing the necessary information to produce the plots. 
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
- log : lsst.log.Log, optional
- Logger to handle messages 
 
- dataset : 
 - 
static findGroups(x, maxDiff)¶
- Group data into bins, with at most maxDiff distance between bins. - Parameters: - Returns: - index : list
- Bin indices. 
 
- index : 
 - 
static indexForBins(x, nBins)¶
- Builds an index with regular binning. The result can be fed into binData. - Parameters: - x : numpy.array
- Data to bin. 
- nBins : int
- Number of bin. 
 - Returns: - np.digitize(x, bins): `numpy.array`
- Bin indices. 
 
- x : 
 - 
static plotAcoeffsSum(aDict, bDict, pdfPages)¶
- Fig. 14. of Astier+19 - Cumulative sum of a_ij as a function of maximum separation. This plot displays the average over channels. - Parameters: - aDict : dict[numpy.array]
- Dictionary keyed by amp names containing the fitted ‘a’ coefficients from the model in Eq. 20 of Astier+19 (if - ptcFitTypeis- FULLCOVARIANCE).
- bDict : dict[numpy.array]
- Dictionary keyed by amp names containing the fitted ‘b’ coefficients from the model in Eq. 20 of Astier+19 (if - ptcFitTypeis- FULLCOVARIANCE).
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
 
- aDict : 
 - 
static plotCovariances(mu, covs, covsModel, covsWeights, covsNoB, covsModelNoB, covsWeightsNoB, gainDict, noiseDict, aDict, bDict, pdfPages)¶
- Plot covariances and models: Cov00, Cov10, Cov01. - Figs. 6 and 7 of Astier+19 - Parameters: - mu : dict[str,list]
- Dictionary keyed by amp name with mean signal values. 
- covs : dict[str,list]
- Dictionary keyed by amp names containing a list of measued covariances per mean flux. 
- covsModel : dict[str,list]
- Dictionary keyed by amp names containinging covariances model (Eq. 20 of Astier+19) per mean flux. 
- covsWeights : dict[str,list]
- Dictionary keyed by amp names containinging sqrt. of covariances weights. 
- covsNoB : dict[str,list]
- Dictionary keyed by amp names containing a list of measued covariances per mean flux (‘b’=0 in Astier+19). 
- covsModelNoB : dict[str,list]
- Dictionary keyed by amp names containing covariances model (with ‘b’=0 in Eq. 20 of Astier+19) per mean flux. 
- covsWeightsNoB : dict[str,list]
- Dictionary keyed by amp names containing sqrt. of covariances weights (‘b’ = 0 in Eq. 20 of Astier+19). 
- gainDict : dict[str,float]
- Dictionary keyed by amp names containing the gains in e-/ADU. 
- noiseDict : dict[str,float]
- Dictionary keyed by amp names containing the rms redout noise in e-. 
- aDict : dict[str,numpy.array]
- Dictionary keyed by amp names containing ‘a’ coefficients (Eq. 20 of Astier+19). 
- bDict : dict[str,numpy.array]
- Dictionary keyed by amp names containing ‘b’ coefficients (Eq. 20 of Astier+19). 
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
 
- mu : 
 - 
plotNormalizedCovariances(i, j, inputMu, covs, covsModel, covsWeights, covsNoB, covsModelNoB, covsWeightsNoB, pdfPages, offset=0.004, numberOfBins=10, plotData=True, topPlot=False, log=None)¶
- Plot C_ij/mu vs mu. - Figs. 8, 10, and 11 of Astier+19 - Parameters: - i : int
- Covariane lag 
- j : int
- Covariance lag 
- inputMu : dict[str,list]
- Dictionary keyed by amp name with mean signal values. 
- covs : dict[str,list]
- Dictionary keyed by amp names containing a list of measued covariances per mean flux. 
- covsModel : dict[str,list]
- Dictionary keyed by amp names containinging covariances model (Eq. 20 of Astier+19) per mean flux. 
- covsWeights : dict[str,list]
- Dictionary keyed by amp names containinging sqrt. of covariances weights. 
- covsNoB : dict[str,list]
- Dictionary keyed by amp names containing a list of measued covariances per mean flux (‘b’=0 in Astier+19). 
- covsModelNoB : dict[str,list]
- Dictionary keyed by amp names containing covariances model (with ‘b’=0 in Eq. 20 of Astier+19) per mean flux. 
- covsWeightsNoB : dict[str,list]
- Dictionary keyed by amp names containing sqrt. of covariances weights (‘b’ = 0 in Eq. 20 of Astier+19). 
- expIdMask : dict[str,list]
- Dictionary keyed by amp names containing the masked exposure pairs. 
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
- offset : float, optional
- Constant offset factor to plot covariances in same panel (so they don’t overlap). 
- numberOfBins : int, optional
- Number of bins for top and bottom plot. 
- plotData : bool, optional
- Plot the data points? 
- topPlot : bool, optional
- Plot the top plot with the covariances, and the bottom plot with the model residuals? 
- log : lsst.log.Log, optional
- Logger to handle messages. 
 
- i : 
 - 
static plotRelativeBiasACoeffs(aDict, aDictNoB, fullCovsModel, fullCovsModelNoB, signalElectrons, gainDict, pdfPages, maxr=None)¶
- Fig. 15 in Astier+19. - Illustrates systematic bias from estimating ‘a’ coefficients from the slope of correlations as opposed to the full model in Astier+19. - Parameters: - aDict : dict
- Dictionary of ‘a’ matrices (Eq. 20, Astier+19), with amp names as keys. 
- aDictNoB : dict
- Dictionary of ‘a’ matrices (‘b’= 0 in Eq. 20, Astier+19), with amp names as keys. 
- fullCovsModel : dict[str,list]
- Dictionary keyed by amp names containing covariances model per mean flux. 
- fullCovsModelNoB : dict[str,list]
- Dictionary keyed by amp names containing covariances model (with ‘b’=0 in Eq. 20 of Astier+19) per mean flux. 
- signalElectrons : float
- Signal at which to evaluate the a_ij coefficients. 
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
- gainDict : dict[str,float]
- Dicgionary keyed by amp names with the gains in e-/ADU. 
- maxr : int, optional
- Maximum lag. 
 
- aDict : 
 - 
static plot_a_b(aDict, bDict, pdfPages, bRange=3)¶
- Fig. 12 of Astier+19 - Color display of a and b arrays fits, averaged over channels. - Parameters: - aDict : dict[numpy.array]
- Dictionary keyed by amp names containing the fitted ‘a’ coefficients from the model in Eq. 20 of Astier+19 (if - ptcFitTypeis- FULLCOVARIANCE).
- bDict : dict[numpy.array]
- Dictionary keyed by amp names containing the fitted ‘b’ coefficients from the model in Eq. 20 of Astier+19 (if - ptcFitTypeis- FULLCOVARIANCE).
- pdfPages : matplotlib.backends.backend_pdf.PdfPages
- PDF file where the plots will be saved. 
- bRange : int
- Maximum lag for b arrays. 
 
- aDict : 
 - 
run(filenameFull, datasetPtc, linearizer=None, log=None)¶
- Make the plots for the PTC task 
 - 
runDataRef()¶
- Run the Photon Transfer Curve (PTC) plotting measurement task. 
 
- datasetFileName :