SpherePoint¶
-
class
lsst.geom.SpherePoint¶ Bases:
pybind11_builtins.pybind11_objectMethods Summary
atPole(self)bearingTo(self, other)getDec(self)getLatitude(self)getLongitude(self)getPosition(self, units)getRa(self)getTangentPlaneOffset(self, other)getVector(self)isFinite(self)offset(self, bearing, amount)rotated(self, axis, amount)separation(self, other)toUnitXYZ(*[, longitude, latitude, ra, dec])Compute the unit 3-vectors (as separate arrays) corresponding to arrays of longitude and latitude. Methods Documentation
-
atPole(self: lsst.geom.SpherePoint) → bool¶
-
bearingTo(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) → lsst.geom.Angle¶
-
getDec(self: lsst.geom.SpherePoint) → lsst.geom.Angle¶
-
getLatitude(self: lsst.geom.SpherePoint) → lsst.geom.Angle¶
-
getLongitude(self: lsst.geom.SpherePoint) → lsst.geom.Angle¶
-
getPosition(self: lsst.geom.SpherePoint, units: lsst.geom.AngleUnit) → lsst.geom.Point2D¶
-
getRa(self: lsst.geom.SpherePoint) → lsst.geom.Angle¶
-
getTangentPlaneOffset(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) → Tuple[lsst.geom.Angle, lsst.geom.Angle]¶
-
getVector(self: lsst.geom.SpherePoint) → lsst.sphgeom._sphgeom.UnitVector3d¶
-
isFinite(self: lsst.geom.SpherePoint) → bool¶
-
offset(self: lsst.geom.SpherePoint, bearing: lsst.geom.Angle, amount: lsst.geom.Angle) → lsst.geom.SpherePoint¶
-
rotated(self: lsst.geom.SpherePoint, axis: lsst.geom.SpherePoint, amount: lsst.geom.Angle) → lsst.geom.SpherePoint¶
-
separation(self: lsst.geom.SpherePoint, other: lsst.geom.SpherePoint) → lsst.geom.Angle¶
-
static
toUnitXYZ(*, longitude=None, latitude=None, ra=None, dec=None, units)¶ Compute the unit 3-vectors (as separate arrays) corresponding to arrays of longitude and latitude.
Parameters: - longitude :
floatornumpy.ndarray Longitude coordinate of input points.
- latitude :
floatornumpy.ndarray Latitude coordinate of input points.
- ra :
floatornumpy.ndarray Synonym for
longitude.- dec :
floatornumpy.ndarray Synonym for
latitude.- units :
AngleUnit Angle unit for inputs.
Returns: Notes
The returned Cartesian coordinate values are not guaranteed to be normalized according to the conventions of
sphgeom.UnitVector3d, but are nevertheless compatible with the various vectorizedcontainsmethods insphgeombecause those apply that normalization internally.- longitude :
-