DiaPipelineConnections¶
-
class
lsst.ap.association.
DiaPipelineConnections
(*, config=None)¶ Bases:
lsst.pipe.base.PipelineTaskConnections
Butler connections for DiaPipelineTask.
Attributes Summary
Methods Summary
adjustQuantum
(inputs, outputs, label, dataId)Override to make adjustments to lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.buildDatasetRefs
(quantum)Builds QuantizedConnections corresponding to input Quantum Attributes Documentation
-
allConnections
= {'apdbMarker': Output(name='apdb_marker', storageClass='Config', doc='Marker dataset storing the configuration of the Apdb for each visit/detector. Used to signal the completion of the pipeline.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'associatedDiaSources': Output(name='{fakesType}{coaddName}Diff_assocDiaSrc', storageClass='DataFrame', doc='Optional output storing the DiaSource catalog after matching, calibration, and standardization for insertation into the Apdb.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False), 'diaSourceTable': Input(name='{fakesType}{coaddName}Diff_diaSrcTable', storageClass='DataFrame', doc='Catalog of calibrated DiaSources.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'diffIm': Input(name='{fakesType}{coaddName}Diff_differenceExp', storageClass='ExposureF', doc='Difference image on which the DiaSources were detected.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'exposure': Input(name='calexp', storageClass='ExposureF', doc='Calibrated exposure differenced with a template image during image differencing.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1), 'solarSystemObjectTable': Input(name='visitSsObjects', storageClass='DataFrame', doc='Catalog of SolarSolarSystem objects expected to be observable in this detectorVisit.', multiple=False, dimensions=('instrument', 'visit'), isCalibration=False, deferLoad=False, minimum=1), 'warpedExposure': Input(name='{fakesType}{coaddName}Diff_warpedExp', storageClass='ExposureF', doc='Warped template used to create `subtractedExposure`. Not PSF matched.', multiple=False, dimensions=('instrument', 'visit', 'detector'), isCalibration=False, deferLoad=False, minimum=1)}¶
-
apdbMarker
¶
-
associatedDiaSources
¶
-
defaultTemplates
= {'coaddName': 'deep', 'fakesType': ''}¶
-
diaSourceTable
¶
-
diffIm
¶
-
dimensions
= {'visit', 'detector', 'instrument'}¶
-
exposure
¶
-
initInputs
= frozenset()¶
-
initOutputs
= frozenset()¶
-
inputs
= frozenset({'diffIm', 'solarSystemObjectTable', 'diaSourceTable', 'exposure', 'warpedExposure'})¶
-
outputs
= frozenset({'apdbMarker', 'associatedDiaSources'})¶
-
prerequisiteInputs
= frozenset()¶
-
solarSystemObjectTable
¶
-
warpedExposure
¶
Methods Documentation
-
adjustQuantum
(inputs, outputs, label, dataId)¶ Override to make adjustments to
lsst.daf.butler.DatasetRef
objects in thelsst.daf.butler.core.Quantum
during the graph generation stage of the activator.This implementation checks to make sure that the filters in the dataset are compatible with AP processing as set by the Apdb/DPDD schema.
Parameters: - inputs :
dict
Dictionary whose keys are an input (regular or prerequisite) connection name and whose values are a tuple of the connection instance and a collection of associated
DatasetRef
objects. The exact type of the nested collections is unspecified; it can be assumed to be multi-pass iterable and supportlen
andin
, but it should not be mutated in place. In contrast, the outer dictionaries are guaranteed to be temporary copies that are truedict
instances, and hence may be modified and even returned; this is especially useful for delegating tosuper
(see notes below).- outputs :
dict
Dict of output datasets, with the same structure as
inputs
.- label :
str
Label for this task in the pipeline (should be used in all diagnostic messages).
- data_id :
lsst.daf.butler.DataCoordinate
Data ID for this quantum in the pipeline (should be used in all diagnostic messages).
Returns: - adjusted_inputs :
dict
Dict of the same form as
inputs
with updated containers of inputDatasetRef
objects. Connections that are not changed should not be returned at all. Datasets may only be removed, not added. Nested collections may be of any multi-pass iterable type, and the order of iteration will set the order of iteration withinPipelineTask.runQuantum
.- adjusted_outputs :
dict
Dict of updated output datasets, with the same structure and interpretation as
adjusted_inputs
.
Raises: - ScalarError
Raised if any
Input
orPrerequisiteInput
connection hasmultiple
set toFalse
, but multiple datasets.- NoWorkFound
Raised to indicate that this quantum should not be run; not enough datasets were found for a regular
Input
connection, and the quantum should be pruned or skipped.- FileNotFoundError
Raised to cause QuantumGraph generation to fail (with the message included in this exception); not enough datasets were found for a
PrerequisiteInput
connection.
- inputs :
-
buildDatasetRefs
(quantum: lsst.daf.butler.core.quantum.Quantum) → Tuple[lsst.pipe.base.connections.InputQuantizedConnection, lsst.pipe.base.connections.OutputQuantizedConnection]¶ Builds QuantizedConnections corresponding to input Quantum
Parameters: - quantum :
lsst.daf.butler.Quantum
Quantum object which defines the inputs and outputs for a given unit of processing
Returns: - retVal :
tuple
of (InputQuantizedConnection
, OutputQuantizedConnection
) Namespaces mapping attribute names (identifiers of connections) to butler references defined in the inputlsst.daf.butler.Quantum
- quantum :
-