CpFlatNormalizationTask¶
CpFlatNormalizationTask determines the scaling factor to apply to each exposure/detector set when constructing the final flat field.
Processing summary¶
CpFlatNormalizationTask runs these operations:
- Combine the set of background measurements for all input exposures for all detectors into a matrix 
B[exposure, detector]. - Iteratively solve for two vectors 
E[exposure]andG[detector]whose Cartesian product are the best fit toB[exposure, detector]. 
Python API summary¶
from lsst.cp.pipe.cpFlatNormTask import CpFlatNormalizationTask
- 
class
(*, config: Optional[PipelineTaskConfig] = None, log: Optional[Union[logging.Logger, LsstLogAdapter]] = None, initInputs: Optional[Dict[str, Any]] = None, **kwargs)CpFlatNormalizationTask Rescale merged flat frames to remove unequal screen illumination
...
- 
attribute
config Access configuration fields and retargetable subtasks.
See also
See the CpFlatNormalizationTask API reference for complete details.
Retargetable subtasks¶
No subtasks.
Configuration fields¶
connections¶
- Data type
 lsst.pipe.base.config.Connections- Field type
 ConfigField
Configurations describing the connections of the PipelineTask to datatypes
level¶
- Default
 'DETECTOR'- Field type
 strChoiceField(optional)- Choices
 'DETECTOR'- Correct using full detector statistics.
 'AMP'- Correct using individual amplifiers.
 None- Field is optional
 
Which level to apply normalizations.
saveLogOutput¶
Flag to enable/disable saving of log output for a task, enabled by default.
saveMetadata¶
Flag to enable/disable metadata saving for a task, enabled by default.