ChainedDatastore¶
- 
class lsst.daf.butler.datastores.chainedDatastore.ChainedDatastore(config: Union[Config, str], bridgeManager: DatastoreRegistryBridgeManager, butlerRoot: str = None)¶
- Bases: - lsst.daf.butler.Datastore- Chained Datastores to allow read and writes from multiple datastores. - A ChainedDatastore is configured with multiple datastore configurations. A - put()is always sent to each datastore. A- get()operation is sent to each datastore in turn and the first datastore to return a valid dataset is used.- Parameters: - config : DatastoreConfigorstr
- Configuration. This configuration must include a - datastoresfield as a sequence of datastore configurations. The order in this sequence indicates the order to use for read operations.
- bridgeManager : DatastoreRegistryBridgeManager
- Object that manages the interface between - Registryand datastores.
- butlerRoot : str, optional
- New datastore root to use to override the configuration value. This root is sent to each child datastore. 
 - Notes - ChainedDatastore never supports - Noneor- "move"as an- ingesttransfer mode. It supports- "copy",- "symlink",- "relsymlink"and- "hardlink"if and only if all its child datastores do.- Attributes Summary - containerKey- Key to specify where child datastores are configured. - defaultConfigFile- Path to configuration defaults. - isEphemeral- names- Names associated with this datastore returned as a list. - Methods Summary - emptyTrash(ignore_errors)- Remove all datasets from the trash. - exists(ref)- Check if the dataset exists in one of the datastores. - export(refs, *, directory, transfer)- Export datasets for transfer to another data repository. - export_records(refs)- Export datastore records and locations to an in-memory data structure. - forget(refs)- Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them. - fromConfig(config, bridgeManager, butlerRoot)- Create datastore from type specified in config file. - get(ref, parameters, Any]] = None)- Load an InMemoryDataset from the store. - getLookupKeys()- Return all the lookup keys relevant to this datastore. - getURI(ref, predict)- URI to the Dataset. - getURIs(ref, predict)- Return URIs associated with dataset. - import_records(data, …)- Import datastore location and record data from an in-memory data structure. - ingest(*datasets, transfer, …)- Ingest one or more files into the datastore. - knows(ref)- Check if the dataset is known to any of the datastores. - mexists(refs, artifact_existence, bool]] = None)- Check the existence of multiple datasets at once. - needs_expanded_data_ids(transfer, entity, …)- Test whether this datastore needs expanded data IDs to ingest. - put(inMemoryDataset, ref)- Write a InMemoryDataset with a given - DatasetRefto each datastore.- remove(ref)- Indicate to the datastore that a dataset can be removed. - retrieveArtifacts(refs, destination, …)- Retrieve the file artifacts associated with the supplied refs. - setConfigRoot(root, config, full, overwrite)- Set any filesystem-dependent config options for child Datastores to be appropriate for a new empty repository with the given root. - transaction()- Context manager supporting - Datastoretransactions.- transfer(inputDatastore, ref)- Retrieve a dataset from an input - Datastore, and store the result in this- Datastore.- transfer_from(source_datastore, refs, …)- Transfer dataset artifacts from another datastore to this one. - trash(ref, …)- Indicate to the Datastore that a Dataset can be moved to the trash. - validateConfiguration(entities, DatasetType, …)- Validate some of the configuration for this datastore. - validateKey(lookupKey, entity, DatasetType, …)- Validate a specific look up key with supplied entity. - Attributes Documentation - 
containerKey= 'datastores'¶
- Key to specify where child datastores are configured. 
 - 
defaultConfigFile= 'datastores/chainedDatastore.yaml'¶
- Path to configuration defaults. Accessed within the - configsresource or relative to a search path. Can be None if no defaults specified.
 - 
isEphemeral= False¶
 - 
names¶
- Names associated with this datastore returned as a list. - Can be different to - namefor a chaining datastore.
 - Methods Documentation - 
emptyTrash(ignore_errors: bool = True) → None¶
- Remove all datasets from the trash. - Parameters: - ignore_errors : bool, optional
- Determine whether errors should be ignored. 
 - Notes - Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces. 
- ignore_errors : 
 - 
exists(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → bool¶
- Check if the dataset exists in one of the datastores. - Parameters: - ref : DatasetRef
- Reference to the required dataset. 
 - Returns: 
- ref : 
 - 
export(refs: Iterable[DatasetRef], *, directory: Optional[str] = None, transfer: Optional[str] = None) → Iterable[FileDataset]¶
- Export datasets for transfer to another data repository. - Parameters: - refs : iterable of DatasetRef
- Dataset references to be exported. 
- directory : str, optional
- Path to a directory that should contain files corresponding to output datasets. Ignored if - transferis- None.
- transfer : str, optional
- Mode that should be used to move datasets out of the repository. Valid options are the same as those of the - transferargument to- ingest, and datastores may similarly signal that a transfer mode is not supported by raising- NotImplementedError.
 - Returns: - dataset : iterable of DatasetTransfer
- Structs containing information about the exported datasets, in the same order as - refs.
 - Raises: - NotImplementedError
- Raised if the given transfer mode is not supported. 
 
- refs : iterable of 
 - 
export_records(refs: Iterable[DatasetIdRef]) → Mapping[str, DatastoreRecordData]¶
- Export datastore records and locations to an in-memory data structure. - Parameters: - refs : Iterable[DatasetIdRef]
- Datasets to save. This may include datasets not known to this datastore, which should be ignored. 
 - Returns: - data : Mapping[str,DatastoreRecordData]
- Exported datastore records indexed by datastore name. 
 
- refs : 
 - 
forget(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]) → None¶
- Indicate to the Datastore that it should remove all records of the given datasets, without actually deleting them. - Parameters: - refs : Iterable[DatasetRef]
- References to the datasets being forgotten. 
 - Notes - Asking a datastore to forget a - DatasetRefit does not hold should be a silent no-op, not an error.
- refs : 
 - 
static fromConfig(config: Config, bridgeManager: DatastoreRegistryBridgeManager, butlerRoot: Optional[ResourcePathExpression] = None) → 'Datastore'¶
- Create datastore from type specified in config file. - Parameters: - config : Config
- Configuration instance. 
- bridgeManager : DatastoreRegistryBridgeManager
- Object that manages the interface between - Registryand datastores.
- butlerRoot : str, optional
- Butler root directory. 
 
- config : 
 - 
get(ref: lsst.daf.butler.core.datasets.ref.DatasetRef, parameters: Optional[Mapping[str, Any]] = None) → Any¶
- Load an InMemoryDataset from the store. - The dataset is returned from the first datastore that has the dataset. - Parameters: - ref : DatasetRef
- Reference to the required Dataset. 
- parameters : dict
- StorageClass-specific parameters that specify, for example, a slice of the dataset to be loaded.
 - Returns: - inMemoryDataset : object
- Requested dataset or slice thereof as an InMemoryDataset. 
 - Raises: - FileNotFoundError
- Requested dataset can not be retrieved. 
- TypeError
- Return value from formatter has unexpected type. 
- ValueError
- Formatter failed to process the dataset. 
 
- ref : 
 - 
getLookupKeys() → Set[LookupKey]¶
- Return all the lookup keys relevant to this datastore. - Returns: - keys : setofLookupKey
- The keys stored internally for looking up information based on - DatasetTypename or- StorageClass.
 
- keys : 
 - 
getURI(ref: lsst.daf.butler.core.datasets.ref.DatasetRef, predict: bool = False) → lsst.resources._resourcePath.ResourcePath¶
- URI to the Dataset. - The returned URI is from the first datastore in the list that has the dataset with preference given to the first dataset coming from a permanent datastore. If no datastores have the dataset and prediction is allowed, the predicted URI for the first datastore in the list will be returned. - Parameters: - Returns: - uri : lsst.resources.ResourcePath
- URI pointing to the dataset within the datastore. If the dataset does not exist in the datastore, and if - predictis- True, the URI will be a prediction and will include a URI fragment “#predicted”.
 - Raises: - FileNotFoundError
- A URI has been requested for a dataset that does not exist and guessing is not allowed. 
- RuntimeError
- Raised if a request is made for a single URI but multiple URIs are associated with this dataset. 
 - Notes - If the datastore does not have entities that relate well to the concept of a URI the returned URI string will be descriptive. The returned URI is not guaranteed to be obtainable. 
- uri : 
 - 
getURIs(ref: lsst.daf.butler.core.datasets.ref.DatasetRef, predict: bool = False) → Tuple[Optional[lsst.resources._resourcePath.ResourcePath], Dict[str, lsst.resources._resourcePath.ResourcePath]]¶
- Return URIs associated with dataset. - Parameters: - ref : DatasetRef
- Reference to the required dataset. 
- predict : bool, optional
- If the datastore does not know about the dataset, should it return a predicted URI or not? 
 - Returns: - primary : lsst.resources.ResourcePath
- The URI to the primary artifact associated with this dataset. If the dataset was disassembled within the datastore this may be - None.
- components : dict
- URIs to any components associated with the dataset artifact. Can be empty if there are no components. 
 - Notes - The returned URI is from the first datastore in the list that has the dataset with preference given to the first dataset coming from a permanent datastore. If no datastores have the dataset and prediction is allowed, the predicted URI for the first datastore in the list will be returned. 
- ref : 
 - 
import_records(data: Mapping[str, lsst.daf.butler.core.datastoreRecordData.DatastoreRecordData]) → None¶
- Import datastore location and record data from an in-memory data structure. - Parameters: - data : Mapping[str,DatastoreRecordData]
- Datastore records indexed by datastore name. May contain data for other - Datastoreinstances (generally because they are chained to this one), which should be ignored.
 - Notes - Implementations should generally not check that any external resources (e.g. files) referred to by these records actually exist, for performance reasons; we expect higher-level code to guarantee that they do. - Implementations are responsible for calling - DatastoreRegistryBridge.inserton all datasets in- data.locationswhere the key is in- names, as well as loading any opaque table data.
- data : 
 - 
ingest(*datasets, transfer: Optional[str] = None, record_validation_info: bool = True) → None¶
- Ingest one or more files into the datastore. - Parameters: - datasets : FileDataset
- Each positional argument is a struct containing information about a file to be ingested, including its path (either absolute or relative to the datastore root, if applicable), a complete - DatasetRef(with- dataset_id not None), and optionally a formatter class or its fully-qualified string name. If a formatter is not provided, the one the datastore would use for- puton that dataset is assumed.
- transfer : str, optional
- How (and whether) the dataset should be added to the datastore. If - None(default), the file must already be in a location appropriate for the datastore (e.g. within its root directory), and will not be modified. Other choices include “move”, “copy”, “link”, “symlink”, “relsymlink”, and “hardlink”. “link” is a special transfer mode that will first try to make a hardlink and if that fails a symlink will be used instead. “relsymlink” creates a relative symlink rather than use an absolute path. Most datastores do not support all transfer modes. “auto” is a special option that will let the data store choose the most natural option for itself.
- record_validation_info : bool, optional
- If - True, the default, the datastore can record validation information associated with the file. If- Falsethe datastore will not attempt to track any information such as checksums or file sizes. This can be useful if such information is tracked in an external system or if the file is to be compressed in place. It is up to the datastore whether this parameter is relevant.
 - Raises: - NotImplementedError
- Raised if the datastore does not support the given transfer mode (including the case where ingest is not supported at all). 
- DatasetTypeNotSupportedError
- Raised if one or more files to be ingested have a dataset type that is not supported by the datastore. 
- FileNotFoundError
- Raised if one of the given files does not exist. 
- FileExistsError
- Raised if transfer is not - Nonebut the (internal) location the file would be moved to is already occupied.
 - Notes - Subclasses should implement - _prepIngestand- _finishIngestinstead of implementing- ingestdirectly. Datastores that hold and delegate to child datastores may want to call those methods as well.- Subclasses are encouraged to document their supported transfer modes in their class documentation. 
- datasets : 
 - 
knows(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → bool¶
- Check if the dataset is known to any of the datastores. - Does not check for existence of any artifact. - Parameters: - ref : DatasetRef
- Reference to the required dataset. 
 - Returns: 
- ref : 
 - 
mexists(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], artifact_existence: Optional[Dict[lsst.resources._resourcePath.ResourcePath, bool]] = None) → Dict[lsst.daf.butler.core.datasets.ref.DatasetRef, bool]¶
- Check the existence of multiple datasets at once. - Parameters: - refs : iterable of DatasetRef
- The datasets to be checked. 
- artifact_existence : dict[lsst.resources.ResourcePath,bool]
- Optional mapping of datastore artifact to existence. Updated by this method with details of all artifacts tested. Can be - Noneif the caller is not interested.
 - Returns: 
- refs : iterable of 
 - 
needs_expanded_data_ids(transfer: Optional[str], entity: Optional[Union[DatasetRef, DatasetType, StorageClass]] = None) → bool¶
- Test whether this datastore needs expanded data IDs to ingest. - Parameters: - Returns: 
 - 
put(inMemoryDataset: Any, ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → None¶
- Write a InMemoryDataset with a given - DatasetRefto each datastore.- The put() to child datastores can fail with - DatasetTypeNotSupportedError. The put() for this datastore will be deemed to have succeeded so long as at least one child datastore accepted the inMemoryDataset.- Parameters: - inMemoryDataset : object
- The dataset to store. 
- ref : DatasetRef
- Reference to the associated Dataset. 
 - Raises: - TypeError
- Supplied object and storage class are inconsistent. 
- DatasetTypeNotSupportedError
- All datastores reported - DatasetTypeNotSupportedError.
 
- inMemoryDataset : 
 - 
remove(ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → None¶
- Indicate to the datastore that a dataset can be removed. - The dataset will be removed from each datastore. The dataset is not required to exist in every child datastore. - Parameters: - ref : DatasetRef
- Reference to the required dataset. 
 - Raises: - FileNotFoundError
- Attempt to remove a dataset that does not exist. Raised if none of the child datastores removed the dataset. 
 
- ref : 
 - 
retrieveArtifacts(refs: Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef], destination: lsst.resources._resourcePath.ResourcePath, transfer: str = 'auto', preserve_path: bool = True, overwrite: bool = False) → List[lsst.resources._resourcePath.ResourcePath]¶
- Retrieve the file artifacts associated with the supplied refs. - Parameters: - refs : iterable of DatasetRef
- The datasets for which file artifacts are to be retrieved. A single ref can result in multiple files. The refs must be resolved. 
- destination : lsst.resources.ResourcePath
- Location to write the file artifacts. 
- transfer : str, optional
- Method to use to transfer the artifacts. Must be one of the options supported by - lsst.resources.ResourcePath.transfer_from(). “move” is not allowed.
- preserve_path : bool, optional
- If - Truethe full path of the file artifact within the datastore is preserved. If- Falsethe final file component of the path is used.
- overwrite : bool, optional
- If - Trueallow transfers to overwrite existing files at the destination.
 - Returns: - targets : listoflsst.resources.ResourcePath
- URIs of file artifacts in destination location. Order is not preserved. 
 
- refs : iterable of 
 - 
classmethod setConfigRoot(root: str, config: Config, full: Config, overwrite: bool = True) → None¶
- Set any filesystem-dependent config options for child Datastores to be appropriate for a new empty repository with the given root. - Parameters: - root : str
- Filesystem path to the root of the data repository. 
- config : Config
- A - Configto update. Only the subset understood by this component will be updated. Will not expand defaults.
- full : Config
- A complete config with all defaults expanded that can be converted to a - DatastoreConfig. Read-only and will not be modified by this method. Repository-specific options that should not be obtained from defaults when Butler instances are constructed should be copied from- fullto- config.
- overwrite : bool, optional
- If - False, do not modify a value in- configif the value already exists. Default is always to overwrite with the provided- root.
 - Notes - If a keyword is explicitly defined in the supplied - configit will not be overridden by this method if- overwriteis- False. This allows explicit values set in external configs to be retained.
- root : 
 - 
transaction() → Iterator[lsst.daf.butler.core.datastore.DatastoreTransaction]¶
- Context manager supporting - Datastoretransactions.- Transactions can be nested, and are to be used in combination with - Registry.transaction.
 - 
transfer(inputDatastore: lsst.daf.butler.core.datastore.Datastore, ref: lsst.daf.butler.core.datasets.ref.DatasetRef) → None¶
- Retrieve a dataset from an input - Datastore, and store the result in this- Datastore.- Parameters: - inputDatastore : Datastore
- The external - Datastorefrom which to retreive the Dataset.
- ref : DatasetRef
- Reference to the required dataset in the input data store. 
 - Returns: - results : list
- List containing the return value from the - put()to each child datastore.
 
- inputDatastore : 
 - 
transfer_from(source_datastore: Datastore, refs: Iterable[DatasetRef], local_refs: Optional[Iterable[DatasetRef]] = None, transfer: str = 'auto', artifact_existence: Optional[Dict[ResourcePath, bool]] = None) → None¶
- Transfer dataset artifacts from another datastore to this one. - Parameters: - source_datastore : Datastore
- The datastore from which to transfer artifacts. That datastore must be compatible with this datastore receiving the artifacts. 
- refs : iterable of DatasetRef
- The datasets to transfer from the source datastore. 
- local_refs : iterable of DatasetRef, optional
- The dataset refs associated with the registry associated with this datastore. Can be - Noneif the source and target datastore are using UUIDs.
- transfer : str, optional
- How (and whether) the dataset should be added to the datastore. Choices include “move”, “copy”, “link”, “symlink”, “relsymlink”, and “hardlink”. “link” is a special transfer mode that will first try to make a hardlink and if that fails a symlink will be used instead. “relsymlink” creates a relative symlink rather than use an absolute path. Most datastores do not support all transfer modes. “auto” (the default) is a special option that will let the data store choose the most natural option for itself. If the source location and transfer location are identical the transfer mode will be ignored. 
- artifact_existence : dict[lsst.resources.ResourcePath,bool]
- Optional mapping of datastore artifact to existence. Updated by this method with details of all artifacts tested. Can be - Noneif the caller is not interested.
 - Raises: - TypeError
- Raised if the two datastores are not compatible. 
 
- source_datastore : 
 - 
trash(ref: Union[lsst.daf.butler.core.datasets.ref.DatasetRef, Iterable[lsst.daf.butler.core.datasets.ref.DatasetRef]], ignore_errors: bool = True) → None¶
- Indicate to the Datastore that a Dataset can be moved to the trash. - Parameters: - ref : DatasetRefor iterable thereof
- Reference(s) to the required Dataset. 
- ignore_errors : bool, optional
- Determine whether errors should be ignored. When multiple refs are being trashed there will be no per-ref check. 
 - Raises: - FileNotFoundError
- When Dataset does not exist and errors are not ignored. Only checked if a single ref is supplied (and not in a list). 
 - Notes - Some Datastores may implement this method as a silent no-op to disable Dataset deletion through standard interfaces. 
- ref : 
 - 
validateConfiguration(entities: Iterable[Union[DatasetRef, DatasetType, StorageClass]], logFailures: bool = False) → None¶
- Validate some of the configuration for this datastore. - Parameters: - Raises: - DatastoreValidationError
- Raised if there is a validation problem with a configuration. All the problems are reported in a single exception. 
 - Notes - This method checks each datastore in turn. 
 - 
validateKey(lookupKey: LookupKey, entity: Union[DatasetRef, DatasetType, StorageClass]) → None¶
- Validate a specific look up key with supplied entity. - Parameters: - lookupKey : LookupKey
- Key to use to retrieve information from the datastore configuration. 
- entity : DatasetRef,DatasetType, orStorageClass
- Entity to compare with configuration retrieved using the specified lookup key. 
 - Raises: - DatastoreValidationError
- Raised if there is a problem with the combination of entity and lookup key. 
 - Notes - Bypasses the normal selection priorities by allowing a key that would normally not be selected to be validated. 
- lookupKey : 
 
- config :